
1 DELPHI INFORMANT MAGAZINE | May 2004

ON THE COVER
 Sound+Vision

4 Extending Dreamweaver
 Generally, Dreamweaver extensions are developed using HTML and

JavaScript. You can also use C, however, and Macromedia makes a C
header fi le named mm_jsapi.h available for just that purpose. But what’s
the use of that to a Delphi developer? Never fear, because Stefan van As
is here to describe the Pascal translation of this fi le (mm_jsapi.pas), and
how to use Delphi to create Dreamweaver extensions.

FEATURES
 Columns & Rows

 11 Troubleshooting ADO.NET Typed DataSets
 Untyped DataSets provide all the features you need, but using them could

be easier. A wizard that automatically adds the DataTable, DataColumn,
and Constraint objects would be a big help. Until that wizard comes along,
however, Bill Todd shares his techniques for working with DataTable and
DataColumn objects at design time — complete with sample code!

 .NET Developer

16 System.IO: Streams and Serialization
 Continuing his exploration of the System.IO namespace, this month Xavier Pacheco explains

how to work with streams, including how to write from text fi les to streams (and vice versa), how
to pull Boolean, string, integers, and doubles from a binary stream, and much more. Best of all,
Xavier has created three demo apps for you to download and study.

 Greater Delphi

21 RSA Encryption
 Fernando Vicaria introduces RSA encryption, but from a different perspective. Starting

with the idea of prime numbers, he builds a solid theoretical basis that culminates with the
implementation of a full-blown encryption system — one that can potentially be made as secure
as anything available in the software industry today.

 Informant Spotlight

28 Moving to ADO.NET
 Emphasizing how to convert your VCL TDataSet skills to ADO.NET skills, Glenn Stephens covers

the basics of ADO.NET, including the Borland Data Providers, accessing data, creating master-
detail relationships, accessing data from code, creating calculated fi elds, and validating data.
And he shares fi ve sample projects to demonstrate!

REVIEWS
38 Doc-To-Help 7.0 Professional
 Product Review by Mike Riley

41 Delphi Developer’s Guide to XML,
Second Edition

 Book Review by Mike Riley

www.DelphiZine.comwww.DelphiZine.com

Delphi Informant
The Complete Month ly Guide to Delphi DevelopmentMay 2004 vol.10, no. 5

™ ®

Reviews: Doc-To-Help and Delphi Developer’s Guide to XML v2

Not Just for C Programmers Anymore
DREAMWEAVER
e x t e n d i n g

Troubleshooting Typed
 DataSets

.NET Streams
& Serialization

Transitioning to
ADO.NET

RSA Encryption

INSIDE

D E P A R T M E N T S
 2 — Toolbox
42 — File | New by Alan C. Moore, Ph.D.

M a y 2 0 0 4 | Volume 10 Number 5

Cover Art by Arthur A. Dugoni Jr.

T O O L B O X

MySQLDirect .NET 2.00 Released
Core Lab announced the release of
MySQLDirect .NET 2.00, an ADO.NET
data provider for direct access to the
MySQL database server for the Micro-
soft .NET Framework.
 MySQLDirect .NET is based on
ActiveX Data Objects for the .NET
Framework (ADO.NET). ADO.NET
provides a rich set of components
for creating distributed, data-shar-
ing applications. It is an integral part
of the .NET Framework, providing
access to relational data, XML, and
application data.
 MySQLDirect .NET can be used in
the same way as the SQL Server .NET
or the OLE DB .NET Data Provider.
 MySQLDirect .NET provides function-
ality for connecting to the MySQL data-
base, executing commands, and retriev-
2 DELPHI INFORMANT MAGAZINE | May 2004
ing results. Those results can be pro-
cessed directly or placed in an ADO.NET
DataSet for further processing while in
a disconnected state. While in the Data-
Set, data can be exposed to the user,
combined with other data from multiple
sources, or passed remotely between
tiers. Any processing performed on the
data while in the DataSet can then be
reconciled to MySQL database.
 MySQLDirect .NET is designed to be
lightweight. It consists of a minimal
layer between the MySQL database
and your code.
 Also new is a database explorer
tool integrated in Visual Studio. NET.
DBExplorer lets you view, create, and
manipulate database connections,
schema objects, and data using a
grid-based editor.
 The standard edition includes
ADO.NET core classes and classes for
native data types only. The profession-
al edition includes additional classes,
design-time extensions, and wizards.
 MySQLDirect .NET supports Del-
phi 8 and Microsoft ASP.NET Web
Matrix. MySQLDirect .NET Data Pro-
vider is licensed per developer and
registered users can deploy run-time
assemblies with executable applica-
tions royalty fee. Free support is
provided for registered users. A trial
version is available for free download
from the Core Lab Web site.

Core Lab
Price: MySQLDirect .NET 2.00 Standard, US$99;
MySQLDirect .NET 2.00 Professional, US$149.
Upgrade from version 1, US$39.
Contact: support@crlab.com
Web Site: www.crlab.com
TurboDemo 5.0 Available
Bernard D&G announced the release
of TurboDemo 5.0, a Windows-based
application to create professional
demonstrations and interactive
tutorials with no programming
knowledge required.
 Even though the finished demon-
strations or tutorials may include
animation, background music, verbal
instructions, interactivity with the
learner, and special effects, the gener-
ated demos/tutorials have extremely
small file sizes (about 100KB per min-
ute of playback). This allows them
to be easily distributed; they can be
accessed and played online to sell
products and services, e-mailed to a
customer to provide technical sup-
port, circulated via CD for internal
training, or incorporated into a Win-
dows Help file to provide animated,
interactive user support.
 Even a novice can quickly create
a dynamic demonstration in three
simple steps: 1) Capture the screens
and/or import pictures; 2) Enhance
the slides with special effects such as
images and balloons, add verbal cues
or sound, and include hot spots to
allow the viewer to interact with the
demonstrations; and 3) Compile the
slides into the demonstration or tuto-
rial format of your choice (such as
Flash, GIF, or Java).
 Once created, the demonstrations
or tutorials can be played on all
operating systems and the viewer is
not required to have the TurboDemo
software, or even an Internet
connection. With TurboDemo, your
audience is not limited by computer
preference or language.
 TurboDemo 5.0 offers many new
functions and features, including:
a network version that allows the
program to launch from a CD or the
server without installation; faster
recording capabilities with DirectX
technology and an automatic capture
function; a new Memory Manager
that uses less RAM; more styles of
balloons, notes, and interactive text
objects to direct the attention of the
viewer on each slide; new export
formats, animated objects, and many
other enhancements.
 See the Bernard D&G Web site for
complete details on the Standard and
Professional versions, as well as all
the upgrades to TurboDemo 5.0.

Bernard D&G
Price: See Web site.
Contact: sales@turbodemo.com
Web Site: www.turbodemo.com
RemObjects SDK 3.0 for Delphi Announced
RemObjects Software released
RemObjects SDK 3.0 for Delphi and
Kylix. RemObjects SDK allows you to
remotely access objects residing on a
server from clients inside the LAN or
across the Internet. It supports object
pooling, asynchronous invocation,
compression, encryption, and a variety
of protocols such as TCP/IP, HTTP,
UDP, POP3/SMTP, NamedPipes, etc.
It includes the RemObjects Service
Builder and allows you to expose your
services as SOAP Web services.
 RemObjects SDK 3.0 features a com-
pletely rewritten Service Builder 3,
the RAD service-modeling tool; new
extensive plug-in architecture for Ser-
vice Builder 3; a new Service Tester
that allows benchmarking and load-
testing of your services; a new Master
Server database application to easily
share common session data and event
repository among multiple servers;
integrated load balancing and failover
support; new server to client events
and callbacks; and much more.
 In addition, you can now access
your RemObjects Servers from any
COM-compatible language, and from
Active Scripting environments such as
Office and ASP.

RemObjects Software
Price: Single-developer license (includes source),
€299; single-developer license upgrade (includes
source) €199.
Contact: info@remobjects.com
Web Site: www.remobjects.com

www.crlab.com
mailto:support@crlab.com
www.turbodemo.com
mailto:sales@turbodemo.com
www.remobjects.com
mailto:info@remobjects.com

3 DELPHI INFORMANT MAGAZINE | May 2004

T O O L B O X

Registry Defragmentation 5.0 from
Elcor Software physically defragments
the Windows registry.
 After a single run of Registry Defrag-
mentation, the computer speed increas-
es up to 100 percent and the computer
itself stops freezing and crashing. As a
result of regular registry defragmenta-
tion, computer users get a more stable
operating system, shorter application/
system response time, and the most
optimal linear registry structure.
 Registry Defragmentation targets all
those who frequently install/uninstall
new software applications. Uninstall-
ing an application doesn’t completely
remove all program components.
These components start hindering
the computer performance, consum-
ing system resources that should be
allocated otherwise. As more and
more applications get installed and
uninstalled, the problem keeps grow-
ing, making computer performance
unpredictable. This and many other
registry-related problems can be fixed
by Registry Defragmentation.
 Registry Defragmentation 5.0 is dis-
tributed electronically over the Internet;
a free demo version is available from
the Elcor Web site.

Elcor Software
Price: Single copy, US$11.95; site license, US$35.95
Contact: support@elcor.net
Web Site: www.elcor.net

Elcor Software
Releases Registry
Defragmentation 5.0
Packet Sniffer SDK for Windows

MicroOLAP Technologies released Pack-
et Sniffer SDK, a development suite for
network packet capture that works with-
out any preinstalled network drivers. This
Windows library set includes ActiveX,
DLL, VCL, and static library editions for
Microsoft VC and Borland C compilers.
 Previously available only to Delphi/
C++Builder developers, the suite has
been rewritten in Microsoft Visual C++,
and is now available to any development
environment, including Borland Delphi/
C++Builder, Microsoft Visual Basic,
Microsoft Visual C++, Microsoft Visual
C#, Sybase PowerBuilder, Intel C++ for
Windows, and many others.
 Packet Sniffer SDK doesn’t require any
external network drivers to be installed,
but instead uses its own built-in net-
work driver with a very high working
efficiency rate. This driver works directly
with the network adapter selected in the
application. Upon initiation and termina-
tion of the application using Packet Sniff-
er SDK, a built-in network driver loads
and unloads, not interfering with the
previously installed networking software.
 Packet Sniffer SDK features a built-in
BSD Packet Filtering engine, which leads
to an even more increased performance.

MicroOLAP Technologies LLC
Price: See Web site.
Contact: info@microolap.com
Web Site: www.microolap.com
Reg Organizer 2.1 System Utility Announced
ChemTable Software released Reg Orga-
nizer 2.1, a registry maintenance tool for
Windows 95/98/ME/NT/2000/XP/2003.
 Reg Organizer allows Windows users
to take full control over the registry
database using a set of easy-to-use tools
for optimizing system performance. The
application offers advanced registry man-
agement methods that are not included
in Windows, making it possible to pre-
view .reg files before adding data to the
registry; automatically find, replace, and
delete multiple instances of user-speci-
fied registry keys and values; and clean
up obsolete registry entries and monitor
certain registry key modifications.
 Reg Organizer is intended both for
home and corporate users who would
like to take advantage of hidden func-
tionality to keep their registry clean and
the overall system operation at a maxi-
mum. Besides the built-in functionality,
Reg Organizer is capable of learning
new file formats and processing .ini file
settings on-the-fly, which turns the appli-
cation into a handy tool for managing
any data associated with any program
installed on the system. Reg Organizer
boasts a comprehensive help system, an
intuitive user interface, and tight Win-
dows shell integration.

ChemTable Software
Price: Single-user license, US$29.95; small-business
license, US$199.95; site license, US$500.
Contact: support@chemtable.com
Web Site: www.chemtable.com
Powerful Set of Tools for JBuilder Developers
jProductivity has released Productiv-
ity! 2.0, a set of tools for JBuilder
that simplify routine coding and
navigation operations.
 Productivity! makes you aware of
any errors in your code and gives
you immediate assistance to resolve
them. The built-in Task List ensures
that you’ll always be on schedule,
and the documentation support lets
you easily write bulletproof docu-
mentation for your code.
 With Productivity! it’s easy to
write well-composed and easily
maintainable code, and you can
reuse your favorite code fragments.
Also, Productivity! lets you avoid
annoying dialog boxes and wizards
while you are coding. With Produc-
tivity! you can discover context and
navigate through it, use hyperlinks
to surf, and navigate freely through
your classes, methods, and fields.
 Using Productivity! you can obtain
quick help on classes and methods
exactly where and when you need it.
You also can add super interfaces and
change super classes in several simple
steps, or override methods and con-
structors in a couple of clicks. Produc-
tivity! allows you to add access meth-
ods for your fields instantly, and use
your own unique naming standards.
 Productivity! Pro includes additional
code generation tools, IDE improve-
ments, editor enhancements and
options, and navigation tools. A com-
prehensive description of features can
be found on the company’s Web site.
 Productivity! is platform indepen-
dent and requires Borland JBuilder
X. Versions of Productivity! are
also available for earlier versions
of JBuilder. You can download trial
versions of Productivity! from the
company’s Web site.

jProductivity, LLC
Price: Productivity! Standard, US$99; Productivity!
Pro, US$189. Multi-user discounts are available.
Contact: (212) 918-1500
Web Site: www.jproductivity.com

www.jproductivity.com
www.chemtable.com
mailto:support@chemtable.com
www.elcor.net
mailto:support@elcor.net
www.microolap.com
mailto:info@microolap.com

MACROMEDIA DREAMWEAVER § HTML § JAVASCRIPT § DELPHI 5-7

S O U N D + V I S I O N

§ By Stefan van As
 Extending Dreamweaver
Not Just for C Programmers Anymore
In general, you’ll develop Dreamweaver extensions using
HTML and JavaScript. However, some extensions are
developed in C. A C header file named mm_jsapi.h is
available for download at the Macromedia Web site.
This article describes the Pascal translation of this
file (mm_jsapi.pas), and how to use Delphi to create
Dreamweaver extensions. This article assumes you’re
working with Dreamweaver MX and Delphi 5, but the
techniques discussed also apply to Dreamweaver MX
2004 and Delphi versions 6 and 7.

 Most developers have probably heard

about Macromedia Dreamweaver. It’s

a visual DHTML editor for building

Web sites and Web applications. It supports

CSS (Cascading Style Sheets), cross-browser

validation, and several middleware solutions,

such as ColdFusion, ASP, and PHP. What most

people don’t realize, however, is that Dreamweaver

is an extendible product. It comes with a huge

JavaScript-based API that allows developers

to create their own Dreamweaver extensions.

Some of these third-party extensions are

published at the Dreamweaver Exchange Web

site: www.macromedia.com/cfusion/exchange/

index.cfm?view=sn120.
4 DELPHI INFORMANT MAGAZINE | May 2004
Dreamweaver extensions typically automate changes to
the user’s current document, such as inserting HTML or
JavaScript, changing text or image properties, or inserting
and managing blocks of server code in the current
document. Most extension developers write an extension
to handle a common, repetitive task.

There are three main components to Dreamweaver
extensibility:
1) An HTML parser/renderer, which makes it possible to

design user interfaces for extensions. Dreamweaver
has a built-in HTML parser/renderer for this.

2) A JavaScript engine, which executes the JavaScript code
in extension files. Dreamweaver MX uses the Mozilla
JavaScript 1.5 engine (also known as SpiderMonkey)
for this. This is the same JavaScript engine that’s used
in Web browsers such as Netscape Navigator.

3) A series of APIs that provide access to Dreamweaver
functionality through JavaScript. These are generally
referred to as the Dreamweaver extensibility APIs.

The Mozilla JavaScript engine that’s used by
Dreamweaver extensibility (and some Web browsers
such as Netscape Navigator) comes with several built-
in JavaScript objects, such as Array, Date, RegExp,
etc. These objects are a good foundation on which to
build extensibility into Dreamweaver. However, several
tasks unique to Dreamweaver extensibility cannot be
accomplished with the objects available in the Mozilla
JavaScript engine.

To make creating useful Dreamweaver extensions
possible, Dreamweaver introduces a number of additional
JavaScript objects that are specific to Dreamweaver
extensibility (in addition to the JavaScript objects that
are provided by the Mozilla JavaScript engine). The most

www.macromedia.com/cfusion/exchange/index.cfm?view=sn120
www.macromedia.com/cfusion/exchange/index.cfm?view=sn120

S o u n d + V i s i o n | Extending Dreamweaver

var theDOM = dw.getDocumentDOM();
if (theDOM) {
 var theImg = theDOM.images[0];
 if (theImg) theImg.src = "MyImage.gif";
}

Figure 1: Getting a reference to the user’s document DOM.

a

a

common (and most important) one that you’ll probably
use the most is the dw object (short for Dreamweaver
object). This dw object exposes more than 400 properties
and methods. For example: the dw.getDocumentDOM
method returns a reference to the user’s document DOM.

It’s important to distinguish between the DOM of the
user’s document and the DOM of the extension UI; the
way that you reference each DOM is different. You ref-
erence objects in your extension UI via document, e.g.
document.forms[0]. To reference objects in the user’s docu-
ment, however, you must call what is probably the single
most important Dreamweaver extensibility API function,
dw.getDocumentDOM.
For example, to refer
to the first image in
the user’s document,
you can store the
user’s document object
in a variable, as shown
in Figure 1.

The getDocumentDOM method of the dw object is a cus-
tom object implemented by Dreamweaver, and is widely
used within extensions. For additional information on the
properties and methods of the dw object, see the Extend-
ing Dreamweaver MX manual.

Most Dreamweaver extensions are simple and consist of only
one or two files: an HTML document that “acts” as the UI
to the extension, and a JavaScript document that does the
work. Most of the time these two files have the same name,
but there are also extensions that consist of several dozen,
if not several hundred, files. On multiple user systems,
such as Windows XP, these extension files are placed in the
folder: C:\Documents and Settings\[UserName]\Application
Data\Macromedia\Dreamweaver MX\Configuration. Oth-
erwise, they’re placed in C:\Program Files\Macromedia\
Dreamweaver MX\Configuration.

Your extension files must be placed in either one of these
folders for Dreamweaver to recognize them. You can do
this by hand, or you could package your extension files
using the Macromedia Extension Manager (EM), which
comes with various Macromedia products. (In Dream-
weaver, select Commands | Manage Extensions to launch the
EM.) When the end user installs a packaged extension,
your extension files are placed in the appropriate folder
automatically. In other words, the EM facilitates the pro-
cess of installing extensions in the correct folder(s).

The files you already have in your Configuration folder
contain the extensions that come with the Dreamweaver
product. Macromedia has its own extension develop-
ment group, and a lot of features that are perceived as

“Macromedia Dre
DHTML editor for bu
Web applications. Wh
realize, however, is t

an extendible
5 DELPHI INFORMANT MAGAZINE | May 2004
“native” to the product are actually extensions. You can
use the files that come within the Configuration folder
as examples, but these files are generally more complex
than the average extension that’s available on the Mac-
romedia Exchange Web site. When you modify or delete
these files, you potentially compromise the stability of the
Dreamweaver product.

The folder structure of the Configuration folder corre-
sponds to a specific extension type, e.g. Behaviors are in
the /Configuration/Behaviors folder, Commands in the
/Configuration/Commands folder, and Property Inspectors in
the /Configuration/Inspectors folder. By familiarizing your-
self with these folders, you can discover the interface for
extensions and working examples of each extension type.

One folder within the Configuration folder does not
correspond to a specific extension type. The /Configuration/
Shared folder is the central repository for functions, classes,
and images that are used by more than one extension. Look

here for functions
that perform specific
tasks, such as
creating a valid
DOM reference to
an object, escaping
special characters in
strings, and more.
For more information

on the contents of each subfolder within the Configuration
folder, view the Configuration_ReadMe.htm file.

Dreamweaver automatically calls any extension that exists
in an appropriate Configuration folder when specified con-
ditions are met. In most cases, this means that the user
initiates a task, and then Dreamweaver identifies a related
extension in the Configuration folder, calls the various func-
tions in the extensions, and expects a valid return value
from each. Let’s take a look at a simple Object extension to
see how this works in practice.

Creating a Simple Object Extension
An Object extension is typically used to automate the
insertion of HTML into a document. The UI to an Object
gathers input from the user. (If you plan to submit
your extension for Macromedia certification, your UI
will need to follow certain guidelines.) Dreamweaver
supports HTML form elements as the building blocks
for extension UIs, and displays the UI using its built-in
HTML parser/renderer. Object extensions are stored in the
/Configuration/Objects folder.

The Object extension we’re about to develop will insert the
following HTML into the user’s document:

<embed src="" width="" height=""></embed>

Our Object will consist of two files. The first is an HTML
document that defines both the UI to the Object (the BODY
contains an HTML form that accepts parameters for the
extension) and what is inserted into the user’s document
(the HEAD contains JavaScript functions that process HTML

mweaver is a visual
ilding Web sites and
t most people don’t

hat Dreamweaver is
 product.”

<html>
<head>
<script type="text/javascript" language="JavaScript">
function browseForFile() {
 var theFile = browseForFileURL();
 if (theFile) document.forms[0].filename.value = theFile;
}

function objectTag() {
 var theHTML = '<embed src="' +
 document.forms[0].filename.value;
 theHTML += '" width="' + document.forms[0].width.value;
 theHTML += '" height="' + document.forms[0].height.value;
 theHTML += '"></embed>';
 return theHTML;
}

</script>
<title>Insert MediaPlayer</title>
</head>
<body>
<form>
 <table>
 <tr>
 <td align="right" valign="baseline">Filename:</td>
 <td valign="baseline" nowrap>
 <input type="text" name="filename" size="30">
 <input type="button" onClick="browseForFile()"
 name="button" value="Browse...">
 </td>
 </tr>
 <tr>
 <td align="right" valign="baseline">Width:</td>
 <td valign="baseline">
 <input type="text" name="width"
 size="6" value="200">
 </td>
 </tr>
 <tr>
 <td align="right" valign="baseline">Height:</td>
 <td valign="baseline">
 <input type="text" name="height"
 size="6" value="200">
 </td>
 </tr>
 </table>
</form>
</body>

Figure 2: The HTML/JavaScript source for the Object extension.

Figure 3: This dialog box is the UI to the Object extension.

S o u n d + V i s i o n | Extending Dreamweaver
form input from the BODY and control what is added to the
user’s document). The second is an 18x18 pixel image that
will appear on the Insert panel.

When the user selects the Object by clicking the 18x18
pixel image in the Insert panel, the HTML document
is scanned for a FORM tag. If a FORM tag exists and
the Show Dialog When Inserting Objects option is selected in
the General preferences, Dreamweaver displays the UI,
the user enters parameters for the Object in the UI and
clicks OK. If no FORM tag exists in the HTML document,
Dreamweaver doesn’t display a dialog box. Eventually,
the objectTag function is called, and its return value
is inserted into the user’s document. The Objects API
contains additional functions, but they’re optional. At
a minimum, you must define the objectTag function.
The objectTag return value is inserted into the user’s
document. Returning an empty string, or null, is a signal
to Dreamweaver to do nothing.
6 DELPHI INFORMANT MAGAZINE | May 2004
Figure 2 shows the source for the Object extension. Because
we’re inserting an EMBED tag, we’ll save this document
(along with the accompanying 18x18 pixel image) in the
/Configuration/Objects/Media folder (if this folder doesn’t
exist, create it). This will make the Object extension appear
on the Media category of the Insert panel.

Now that we’ve saved the Object extension (and the accompa-
nying 18x18 pixel image) in the /Configuration/Objects/Media
folder, it’s time to (re)launch Dreamweaver, or hold down
C, right-click the icon in the upper-right corner of the Insert
panel, and select Reload Extensions. The latter is an undocu-
mented shortcut that allows the extension developer to reload
extensions without having to close and restart Dreamweaver.
The Object extension we’ve just created should appear in the
Media category of the Insert bar. When the user clicks the
18x18 pixel icon, the dialog box in Figure 3 will appear.

So far, we’ve used the Dreamweaver extensibility API and
created a simple Object extension. We could — and should
— include additional parameters supported by the EMBED
tag, such as autoStart, showControls, and showStatusBar to
enrich the Object extension, but we’ll stick with what we
have for simplicity’s sake.

So far, we’ve used only HTML and JavaScript. Now it’s time
to include the C-level extensibility layer into our extension.

The C-level Extensibility Layer
The C-level extensibility mechanism lets you develop exten-
sions using a combination of JavaScript and your own Del-
phi code. You define functions using Delphi, bundle them
in a DLL, save the DLL in the /Configuration/JSExtensions
folder, and then call the Delphi functions from JavaScript.
The functions you’ll write in Delphi will eventually “act” as
methods to a custom JavaScript object that’s named identi-
cally to your DLL file.

Why would a developer use the C-level extensibility layer in
the first place? Doesn’t the JavaScript-based Dreamweaver
extensibility API support everything we could possibly want
to do? Yes and no. Sure, there’s nothing you can instruct
Dreamweaver to do in the C-level extensibility layer that you
cannot do using the JavaScript-based APIs. But the JavaScript
language itself is limited, mostly because of built-in security
features. (Remember, the same JavaScript engine is running
client-side in some Web browsers such as Netscape Navigator.)

For example, there’s no file I/O in client-side JavaScript. If
you want to create a Dreamweaver extension that inserts
the contents of a user-specified file in the current user’s

S o u n d + V i s i o n | Extending Dreamweaver

function browseForFile() {
 var theFile = browseForFileURL();
 if (theFile) {
 document.forms[0].filename.value = theFile;
 var docPath = dw.getDocumentPath("document");
 theFile =
 dw.relativeToAbsoluteURL(docPath, "", theFile);
 var theArray = MediaPlayer.getMediaDimensions(theFile);
 if (theArray && theArray.length > 1) {
 document.forms[0].width.value = theArray[0];
 document.forms[0].height.value = theArray[1];
 }
 }
}

Figure 4: Calling a Delphi function from JavaScript.

library MediaPlayer;

{$R *.RES}

uses
 Forms, SysUtils,
 mm_jsapi in 'mm_jsapi.pas';

begin
end.

Figure 5: Beginning to create a Dreamweaver extension in Delphi.

library MediaPlayer;

{$R *.RES}

uses
 Forms, SysUtils,
 mm_jsapi in 'mm_jsapi.pas';

function GetMediaDimensions(cx: JSContext; obj: JSObject;
 argc: UINT; argv: Ajsval; var rval: jsval): JSBool;
 cdecl;
begin
end;

procedure Init;
begin
 JS_DefineFunction(
 'getMediaDimensions', GetMediaDimensions, 1);
end;

begin
 MM_Init := Init;
end.

Figure 6: Registering a Delphi function with the Dreamweaver JavaScript engine.
document, you will have to write the function using the
C-level extensibility layer. This example is partly false,
because Macromedia has already provided a library for file
I/O named DWfile.dll in the /Configuration/JSExtensions
folder, but they used their own C-level extensibility layer
to do it. This is the same C-level extensibility mechanism
we’ll use to create our own DLLs.

Suppose we’d like to query the Media Control Interface
(MCI) driver to automatically determine the width
and height parameters for our Object extension, when
the user presses the Browse button and selects a file.
There isn’t anything we can do in JavaScript to extract
this information (at least not without embedding the
MediaPlayer ActiveX into our extension UI, which would
be extra overhead, visible to the user, and considered
bad practice), but we can with Delphi. Figure 4
shows a modified version of the custom browseForFile
function in our Object extension. Notice that the
browseForFile function calls a Delphi function named
getMediaDimensions, which is stored in a DLL named
MediaPlayer.

The getMediaDimensions function accepts an argument,
unpacks this argument, opens the specified filename in an
instance of Delphi’s TMediaPlayer class, and then returns
the width plus the height of the specified filename as the
return value.

Launch Delphi; select File | New, click DLL, and press OK.
Save this project as MediaPlayer.dpr in the /Configuration
/JSExtensions folder (if this folder doesn’t exist yet,
create it). Select Project | Add to Project, and select the
mm_jsapi.pas unit (this unit is available for download,
see the end of the article for details). mm_jsapi.pas
7 DELPHI INFORMANT MAGAZINE | May 2004
includes definitions for the data types and functions in
the C-level extensibility layer. After a bit of clean up, the
project source looks like that shown in Figure 5. Choose
Build. When the build operation finishes, a file named
MediaPlayer.dll should appear in the /Configuration/
JSExtensions folder.

The Delphi code in your library must interact with the
Dreamweaver JavaScript engine at three different times:
1) At startup, to register the library’s functions. Dream-

weaver will call the procedure you’ve assigned to the
MM_Init variable at initialization time. This variable
is defined in the mm_jsapi.pas unit. You’ll register
the functions you would like to make available to the
Dreamweaver JavaScript engine inside this procedure.

2) When the function is called, to unpack the arguments
passed from JavaScript to Delphi.

3) Before the function returns, to package the return value.

Everything you need to accomplish these tasks (including
the MM_Init variable) is in mm_jsapi.pas, the unit that
defines the data types and functions you’ll need.

Registering a Delphi Function with
the Dreamweaver JavaScript Engine
Let’s start with registering the function that we want to
make available to the Dreamweaver JavaScript engine.
We’ll create a procedure named Init, and upon initializa-
tion of our DLL, assign this procedure to the MM_Init
variable (see Figure 6). This will instruct Dreamweaver
to call the procedure named Init when Dreamweaver is
launched. By the way, if you need to do any processing
while Dreamweaver displays its splash screen, the Init
procedure is the place to do it.

Dreamweaver calls the Init procedure to get the following
three pieces of information:
 the JavaScript name of the function,
 a pointer to the Delphi function, and
 the number of arguments that the function expects.

i

e

S o u n d + V i s i o n | Extending Dreamweaver
To supply Dreamweaver with this information, we’ll
call the JS_DefineFunction function from inside the Init
procedure. JS_DefineFunction is defined in mm_jsapi.pas,
and registers a Delphi function with the Dreamweaver
JavaScript engine. There’s no need to call JS_DefineFunction
from any place other than the procedure pointed to by the
MM_Init variable, which Dreamweaver calls during startup.
JS_DefineFunction takes three arguments:
 the name of the function as it is exposed to JavaScript

(you can invoke the Delphi function from JavaScript
by referring to it with this name)

 a pointer to a Delphi function (this function must accept
certain arguments, which are discussed later)

 the number of arguments that the function expects

The function we’ve just defined must accept the
following arguments:
 cx is a pointer to a JSContext structure, which holds

the Dreamweaver JavaScript engine execution context.
Some functions in mm_jsapi.pas accept this pointer as
one of their arguments.

 obj is a pointer to a JSObject structure that contains
the JavaScript object. It may be an array object
or some other object type. While the JavaScript is
running, the keyword this is equal to this object.

 argc contains the number of JavaScript arguments that
are passed to the function.

 argv is a pointer to an array
that contains the actual
JavaScript arguments that
are passed to the function.
This array is argc elements
in length. Each element in
the array is of type jsval, an
opaque data structure that can
contain an integer, or a pointer to a float, string, or object.
Some functions in mm_jsapi.pas can be used to read and
convert these jsval values to Delphi-compatible data types.

 rval is a pointer to a single jsval. The function’s return
value should be written to rval. Again, mm_jsapi.pas
includes several functions that you can use to convert
Delphi data types to a jsval.

The function we’ve just defined must return a JSBool
value, indicating success (JS_TRUE) or failure (JS_FALSE).
JSBool is a simple data type that stores a Boolean value.
If the function result value equals JS_FALSE, the current
JavaScript stops executing and Dreamweaver will prompt a
JavaScript error message. (There is, by the way, a function
named JS_ReportError in mm_jsapi.pas that allows you to
generate your own custom JavaScript errors).

Last but not least, because Dreamweaver expects a C
function (not a Delphi function), the Delphi function
should use the cdecl calling convention.

In JavaScript, our getMediaDimensions function will
accept one argument from the user. We’ll need to
unpack this argument that contains a filename, convert
the file:// URL to a DOS path, instantiate Delphi’s
TMediaPlayer, and package the width plus the height
of the specified filename as the return value.

“The Delph
library must int

Dreamweaver Ja
at three differ
8 DELPHI INFORMANT MAGAZINE | May 2004
Unpacking JavaScript Arguments
Now that we’ve defined the Delphi function, let’s start with
unpacking the JavaScript argument(s) that are passed to it.
The mm_jsapi.pas unit contains the following functions to
do so:
 JS_ValueToString
 JS_ValueToInteger
 JS_ValueToDouble
 JS_ValueToBoolean
 JS_ValueToObject

All of these functions take a pointer to a JSContext structure
as their first argument (this is the cx argument that’s passed
to our Delphi function), and a jsval from which the function
argument is to be extracted as their second argument.

JS_ValueToObject is a special function; it converts a function
argument to an object. Most of the time, this will probably
be an array object. If this is the case, use JS_GetArrayLength
and JS_GetElement to read its contents (more on these func-
tions later in this article).

In our case, the getMediaDimensions function expects a single
string argument, so we need to call the JS_ValueToString func-
tion, as shown in Listing One (beginning on page 9). Before
doing so, however, we need to validate that we actually
received at least one argument. The argc argument will provide

us with that information.

Because Dreamweaver will
pass a file:// URL, and
because Delphi’s TMediaPlayer
expects a DOS path, we’ll
need to convert the former
to the latter, using a helper

function named JS_FileURLToDOS. The function converts
a file:// URL to a DOS path (for example: file:///C|/Tools/
Example.avi > C:\Tools\Example.avi). Notice this function
isn’t part of mm_jsapi.pas, but a custom function we will
have to write and include with the project.

Ideally, the JS_FileURLToDOS function should decode any
HTTP escape characters in the string that is passed to it,
but for simplicity’s sake, we’ll stick with what we have for
now. If you’re ambitious, you could use Dreamweaver’s
dw.doURLDecoding or Borland’s HTTPDecode function. The
latter is included with Delphi’s HTTPApp.pas unit.

If the DOS filename exists, we’ll create a TMediaPlayer
object, assign the DOS filename to the appropriate prop-
erty, and call the Open method. But before we do so, we’ll
need to create a parent form because TMediaPlayer needs a
windowed parent control (again, see Listing One). Assum-
ing TMediaPlayer didn’t receive an MCI error, we’ll read the
TMediaPlayer.DisplayRect property and retrieve the width
and the height of the specified media.

Packaging the Return Value
So far, we’ve defined a function and unpackaged the
argument(s). Now it’s time to package the return value.
To do so, the mm_jsapi.pas unit contains the following
functions:

 code in your
eract with the
vaScript engine
nt times.”

S o u n d + V i s i o n | Extending Dreamweaver

js
l
h
 y

M
i

Stefan van As is an independent contractor, specialized in Borland (Delphi)
and Macromedia (Authorware, Dreamweaver) development. Based in The
Netherlands, his portfolio consists of several companies inside and outside
the US, including Macromedia, Inc. He is considered an expert on e-learning
development, has co-authored an e-learning book, and is a frequent speaker
at e-learning conferences. If you would like to consult Stefan, contact him at
svanas@xs4all.nl.
 JS_StringToValue
 JS_IntegerToValue
 JS_DoubleToValue
 JS_BooleanToValue
 JS_ObjectToValue

Because our function will
need to return more than one
value, we’ll return an array
object. But before we can call
JS_ObjectToValue and store the
return value in rval, we’ll
need to create the array object
using JS_NewArrayObject
and JS_SetElement (again,
refer to Listing One).
JS_NewArrayObject creates
a new object that contains
an array of jsval values. JS_SetElement writes a single
element to an array object.

In addition to JS_NewArrayObject and JS_SetElement,
mm_jsapi.pas includes the following functions that will
work on JavaScript arrays:
 JS_ObjectType returns the class name of the object

referenced by the specified JSObject. In the case of an
array object, this function would return “Array”.

 JS_GetArrayLength returns the number of elements in
an array object.

 JS_GetElement writes a single element to an array object.

If everything goes well, GetMediaDimensions should
eventually return a JS_TRUE value.

Before we can compile the project that now includes
implementation of both the GetMediaDimensions and
JS_FileURLToDOS functions, we’ll need to add Delphi’s
MPlayer.pas unit to the project’s uses clause.

Now select Build. If the library is already loaded by a
Dreamweaver instance, the Delphi compiler won’t be
able to create the output DLL, and you’ll need to close
down Dreamweaver. If the project compiled okay, launch
Dreamweaver, click the MediaPlayer icon on the Insert panel,
select an existing .avi filename somewhere on your computer
(Delphi 5 installs a nice one named speedis.avi in C:\Program
Files\Borland\Delphi5\Demos\Coolstuf if you have installed
Delphi’s demo projects), and the width and height parameters
should get “calculated” and filled in automatically.

Conclusion
The mm_jsapi.pas unit provides a full translation of the
mm_jsapi.h header file. This is everything you’ll need
in Delphi to create a Dreamweaver extension using
Macromedia’s C-level extensibility layer.

There’s much more to Dreamweaver extensibility in
general, and the C-level extensibility layer in particular,
than an article like this could possibly cover. For example,
there’s a function named JS_ExecuteScript that compiles
and executes a JavaScript string from within Delphi.
Imagine the possibilities.

“The mm_
provides a ful

the mm_jsapi.h
is everything

Delphi to create
extension using

level extensib
9 DELPHI INFORMANT MAGAZINE | May 2004
If you run into trouble, your first line of defense should
be the Extending Dreamweaver manual (once an addition
to Using Dreamweaver, but now a separate 600+ page
manual). The Extending Dreamweaver manual is available
via Help | Extending Dreamweaver, or you can order a printed
version at the Macromedia store.

To communicate with
other developers who
are involved in extension
writing, you might want
to join the Dreamweaver
extensibility newsgroup.
You can access the Web
site for this newsgroup at
www.macromedia.com/go/
extending_newsgrp.

The examples in this article are available for download
on the Delphi Informant Magazine Complete Works CD
located in INFORM\2004\MAY\DI200405SV.

api.pas unit
translation of
eader file. This
ou’ll need in
a Dreamweaver
acromedia’s C-

lity layer.”
Begin Listing One — The MediaPlayer
library; a Dreamweaver extension

library MediaPlayer;

{$R *.RES}

uses

 Forms, SysUtils, MPlayer,

 mm_jsapi in 'mm_jsapi.pas';

function JS_FileURLToDOS(const S: string): string;

 function ReplaceChar(const S: string;

 Old, New: Char): string;

 var

 i: Integer;

 begin

 Result := S;

 for i := 1 to Length(Result) do

 if Result[i] = Old then

 Result[i] := New;

 end;

begin

 Result := S;

 if AnsiSameText(Copy(Result, 1, 8), 'file:///') then

www.macromedia.com/go/extending_newsgrp
mailto:svanas@xs4all.nl

1

S o u n d + V i s i o n | Extending Dreamweaver
 Delete(Result, 1, 8);

 Result := ReplaceChar(Result, '|', ':');

 Result := ReplaceChar(Result, '/', '\');

end;

function GetMediaDimensions(cx: JSContext; obj: JSObject;

 argc: UINT; argv: Ajsval; var rval: jsval): JSBool;

 cdecl;

var

 i: UINT;

 S: string;

 A: JSObject;

 v, w, h: jsval;

 F: TCustomForm;

 M: TMediaPlayer;

begin

 Result := JS_FALSE;

 if argc > 0 then begin // We need at least one argument.

 // Convert argument from jsval to string.

 S := JS_FileURLToDOS(JS_ValueToString(cx, argv[0], i));

 if FileExists(S) then begin

 F := TCustomForm.CreateNew(nil);

 try

 // Instantiate TMediaPlayer (requires parent form).

 M := TMediaPlayer.Create(F);

 M.Parent := F;

 M.FileName := S;

 try

 M.Open;

 if M.Error = 0 then

 try

 // Convert width/height integer values

 // to jsval values.

 with M.DisplayRect do begin

 W := JS_IntegerToValue(Right - Left);

 H := JS_IntegerToValue(Bottom - Top);

 end;

 // Create new object that contains an array.

 A := JS_NewArrayObject(cx, 0, v);

 JS_SetElement(cx,A,0,W); // Add width value.

 JS_SetElement(cx,A,1,H); // Add height value.

 // Return array object.

 rval := JS_ObjectToValue(A);

 Result := JS_TRUE;

 finally

 M.Close;

 end;

 except

 end;

 finally

 F.Free;

 end;

 end;

 end;

end;

procedure Init;

begin

 JS_DefineFunction('getMediaDimensions',

 GetMediaDimensions, 1);

end;

begin

 MM_Init := Init;

end.

End Listing One
0 DELPHI INFORMANT MAGAZINE | May 2004

ADO.NET § DELPHI 8 FOR THE MICROSOFT .NET FRAMEWORK

C O L U M N S & R O W S

§ By Bill Todd
 ADO.NET Data Access
Components
Part IV: Troubleshooting Typed DataSets
Figure 1: The ADO.NET DataSet and associated objects.

�������

��������� ������� ��������

�������

����������

����������

������������
This sounds easy, but it isn’t — and there was a hint of the
problem in Part III of this series.

The sample application in Part III used a DataGrid to
display the data from the Employee table in the DataSet.
However, because the Employee DataTable doesn’t exist
at design time, there’s no way to connect the DataGrid
to the DataTable at design time. The solution was to add
the following line of code to the Open button’s Click event
handler after the call to the Fill method:

EmployeeGrid.DataMember := 'Employee';

This works because the Employee DataTable exists in the
DataSet after the Fill method has been called. However,
if you consider a more realistic data entry form that
contains perhaps 20 TextBox, and other, controls that
are bound to columns in DataTables, the task of typing
one line of code to bind each control to its data source
becomes onerous. There are two solutions. The first
is to use a typed DataSet. The second is to create the
DataTables and their associated DataColumn, DataRow,
Constraint, and DataRelation objects at design time.

 Part III of this series showed how to call

the DataAdapter class’ Fill method to

automatically create a DataTable in a

DataSet and fill the DataTable with the records

returned by the DataAdapter’s SelectCommand

object. Figure 1 shows a diagram of the DataSet

object and the objects it references through its

properties. When you call the DataAdapter.Fill

method, a DataTable and its associated DataRow,

DataColumn, and Constraint objects are created.
11 DELPHI INFORMANT MAGAZINE | May 2004
A typed DataSet is a custom DataSet descendant that has all
the DataColumns included as properties. To create a usable
typed DataSet, you need a design-time tool that lets you gener-
ate the DataTables automatically from their respective Data-
Adapters. This tool must also let you define the DataRelation
objects and any calculated or aggregate data column objects
that you need. After you’ve supplied the required information,
the tool should then generate the XSD schema file, and the .pas
source code file for the typed DataSet.

Typed DataSets have two advantages. First, the columns
are accessed through properties, so you get compile-time
type checking. For example, the compiler will catch the
error if you try to assign the value from a string column
to an integer variable. The second advantage is that the
syntax for accessing the value of a column requires a bit
less typing than the syntax used with untyped DataSets.

You may read that accessing the value of a column in a
typed DataSet is faster than accessing a column’s value in

Figure 2: The main form.

Figure 3: The Tables Collection Editor.

C o l u m n s & R o w s | ADO.NET Data Access Components
an untyped DataSet. This is not true. There are two ways
to access values in an untyped DataSet. One technique is
slower than a typed DataSet, but the other is as fast or
faster. Both techniques will be covered later.

Unfortunately, the tool for generating typed DataSets in
Delphi 8 doesn’t allow you to define the relationships
between tables, so typed DataSets won’t have any
DataRelation objects. This means you must write code to
manage all master-detail relationships. In addition, the
typed DataSet wizard doesn’t provide any way to define
calculated or aggregate columns. The result is that typed
DataSets aren’t very useful in Delphi 8.

Untyped DataSets would be easy to use if there were
a wizard that would do at design time what the
DataAdapter’s FillSchema method does at run time —
namely, add the DataTable, DataColumn, and Constraint
objects to the DataSet component. There is no such
wizard, however, so you must create all the schema for
the DataSet manually using the property editors.

Building the Sample Application Shell
Before building the schema for the DataSet you must create
the shell of the sample application that accompanies this
article (see end of article for download details). First, create
a new WinForms project. Then drag the Department table to
the form, from the Employee database in the Data Explorer.
This will add a BdpConnection and a BdpDataAdapter to the
tray. Name the BdpConnection EmployeeConnection and name
the BdpDataAdapter DeptAdapter. Drag the Employee table
to the form. Then add a second BdpDataAdapter and name
it EmpAdapter. Finally, add a DataGrid to the form. The form
should now look like Figure 2.

In a real application you wouldn’t load all the rows from
the tables into the DataSet. Right-click DeptAdapter and
choose Configure Data Adapter. Add the following WHERE
clause to the SELECT statement in the Data Adapter
Configuration dialog box:

SELECT DEPT_NO, DEPARTMENT, HEAD_DEPT, MNGR_NO, BUDGET,
 LOCATION, PHONE_NO FROM DEPARTMENT
 WHERE HEAD_DEPT = '100'

You’d normally use a parameter (instead of the literal
‘100’) to give the user a way to change the parameter
value. However, I’m going to skip that and stay focused
on building the DataSet schema. Next, change the SELECT
SQL for the EmpAdapter as shown below (the JOIN and the
WHERE clause will retrieve only the employee records for
the departments selected by the DeptAdapter):

SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, HIRE_DATE,
 DEPT_NO, JOB_CODE, JOB_GRADE, JOB_COUNTRY, SALARY
 FROM EMPLOYEE E
 JOIN DEPARTMENT D ON E.DEPT_NO = D.DEPT_NO
 WHERE D.HEAD_DEPT = 100

Building the DataSet
Select EmpDataSet from the main form, click the Tables
property in the Object Inspector, then click the ellipsis
button to open the Tables Collection Editor. Click the
12 DELPHI INFORMANT MAGAZINE | May 2004
Add button
to add a new
DataTable, then
set its TableName
property to
DEPARTMENT and its
Name property to
DeptTable. Figure 3
shows the Tables
Collection Editor
after the Department and Employee tables have been added.

Next, select the Columns property and click the ellipsis
button to open the Columns Collection Editor. Click the Add
button to add a new DataColumn object. Set the properties
as shown in Figure 4. Repeat this process for the other
columns in the Department table. Figure 5 shows the
Columns Collection Editor after all the columns have been

Figure 4: Dept_No column properties.

Property Value

AllowDBNull False

Caption Department Number

ColumnName Dept_No

MaxLength 3

Name DeptNoColumn

C o l u m n s & R o w s | ADO.NET Data Access Components

Figure 6: Properties of the DataColumn object.

Property Description

AllowDBNull Determines whether the column can have
the null state.

AutoIncrement Will the server automatically assign a
unique number to this column?

AutoIncrementSeed The starting value.

AutoIncrementStep The amount the value is incremented for
each new row.

Caption The display name for the column. If you
leave it blank it will be set to the same value
as the ColumnName property.

ColumnMapping How the column is saved using the
DataSet.WriteXML method. This has nothing
to do with the DataAdapter.ColumnMappings
property discussed in Part III.

ColumnName The name used in the DataTable’s Columns
collection.

DataType The .NET Framework type for this column.

DefaultValue The default value assigned to this column
when a new row is created.

Expression The expression used to calculate the value
of this column.

MaxLength The maximum length of a text column.

ReadOnly Is the column read only or read/write?

Unique Can the column have duplicate values?

Figure 5: The Columns Collection Editor. Figure 7: The Constraints Collection Editor.
added. Figure 6 contains a brief description of the most
important properties of the DataColumn object.

The DataColumn object properties should be self explanatory
— with the possible exception of AutoIncrementSeed and
AutoIncrementStep. Remember that the data in the DataSet
is stored in memory on the local workstation. When a user
inserts a new row in a table, the database server is unaware
that a new row has been added. If the table contains an
13 DELPHI INFORMANT MAGAZINE | May 2004
autoincrement column, a temporary unique value must
be generated locally until the final value is assigned when
the new row is added to the database. This process will be
covered in detail in a future installment in this series.

After closing the Columns Collection Editor, you’ll be
back in the Tables Collection Editor. The next step is to
add the primary key constraint. One way to do this is
to select the PrimaryKey property, click the drop-down
button, then click the box next to each column you want
to add to the primary key. The problem with this is that
the constraint will be named Constraint1, which isn’t
very descriptive.

Another solution is to select the Constraints property and
click the ellipsis button to open the Constraints Collection
Editor, shown in Figure 7. Click the Add button and choose
Unique Constraint. In the Unique Constraint dialog box enter
the name for the constraint, check the fields you want
to include, and check the Primary Key checkbox; then click
OK. The disadvantage of this method is that you cannot
control the order of the fields in the constraint.

Returning to the Tables Collection Editor, add a new
table, set its TableName property to EMPLOYEE and its Name
property to EmployeeTable. Next, add all the columns.
When you get to the Dept_No column you’ll get an
error if you try to set its Name property to DeptNoColumn.
The DataColumn object names must be unique, and
the DataColumn object for the Dept_No column in the
Department table is already named DeptNoColumn. Pick
another name; for example, EmpDeptNoColumn for the
DataColumn object in the Employee table.

You can also add calculated columns to the Columns
collection — at least in theory. Just add another column
and set the Expression property to give the value you want.
For example, you can add a column named Full_Name and
set the Expression property to:

First_Name + ' ' + Last_Name

Figure 8: The Relation dialog box.

C o l u m n s & R o w s | ADO.NET Data Access Components

procedure DepartmentForm.DeptForm_Load(
 Sender: System.Object; e: System.EventArgs);
begin
 EmployeeTable.Columns.Add('Full_Name', typeof(string),
 'FIRST_NAME + '' '' + LAST_NAME');
 EmployeeConn.Open;
 DeptAdapter.Fill(DepartmentTable);
 EmpAdapter.Fill(EmployeeTable);
end;

Figure 9: The form’s Load event handler.
The problem is that the value of the column is always
null at run time. This is a bug in Microsoft’s Columns
Collection Editor. In version 1.1 of the .NET Framework
the only way to add an expression column is in code.
You’ll see how later in this article.

Close the Columns Collection Editor and open the Con-
straints Collection Editor. Add a primary key constraint on
the Emp_No column. Close the Constraints Collection Edi-
tor and the Tables Collection Editor. Next, make sure the
EmpDataSet is selected and return to the Object Inspector.
Select the Relations property and click the ellipsis button
to open the Relations Collection Editor.

Click the Add button to open the Relation dialog box shown
in Figure 8. To define the relation enter a name, then
choose the parent table and child table from the drop-
down lists. Then choose the parent table’s primary key
column, and the child table’s foreign key column, from the
drop-down lists in the grid. Add additional rows to the grid
if the keys include more than one column. The Update rule
and Delete rule drop-downs let you choose what happens
when a row in the parent table is updated or deleted. The
choices are Cascade, Set Null, Set Default, or None. These are
the same choices offered by most relational databases, and
are described in detail in the online help.

The Accept/Reject rule is unique to the ADO.NET DataSet.
Changes to rows can be accepted using the AcceptChanges
method or canceled using the RejectChanges method of the
DataSet, DataTable, or DataRow. The Accept/Reject rule deter-
mines what happens to child rows when AcceptChanges
or RejectChanges is called for the parent row. The choices
are Cascade and None. If Cascade is selected the effect of
AcceptChanges or RejectChanges will be cascaded to the
child table. Choose Cascade for the sample application.
14 DELPHI INFORMANT MAGAZINE | May 2004
Two things happen when you click the OK button. First, a
foreign key constraint is created and added to the
Constraints collection of the child DataTable (in this case
the Employee table). You can see this by returning to the
Tables Collection Editor, selecting the Employee table, and
opening the Constraints Collection Editor. The constraint
will be named Constraint1. To give it a more meaningful
name click the Edit button and change the name. Second,
the DataRelation object is also created and added to the
EmpDataSet’s Relations collection.

Connecting the DataGrid
Select the DataGrid, then select the DataSource property and
click the drop-down button. Choose EmpDataSet from the list.
Next, select the DataMember property and choose Department
from the drop-down list. Because there is a DataRelation
object connecting the Department DataTable to the Employee
DataTable, the DataGrid will let users drill down from each
Department row to see the Employee rows for that Department.

Select the form, then click the Events tab in the Object Inspec-
tor. Double-click the Load event and add the code shown
in Figure 9 to the event handler. The first line adds the
Full_Name column to the Employee table. The Add method’s
first parameter sets the ColumnName property; the second sets
the DataType of the column; and the third parameter sets the
Expression property.

The second line opens the connection to the database.
The next two lines fill the two DataTables with data. The
Fill method has several overloaded versions. Note that the
one called in Figure 9 takes a DataTable object as its only
parameter. There is another version that takes two param-
eters. The first is the DataSet, and the second is the name
of the DataTable as a string. This version assumes that the
only reason you would pass a DataTable name instead of
the DataTable object is that the DataTable doesn’t exist and
must be created. That won’t work in this case, because the
DataTable objects were created at design time and already
exist when this code runs.

Run the application, and click the plus sign next to a row in
the DataGrid. The form should look like Figure 10. Figure 11
shows what the form looks like after you click the link to dis-
play the employee records. Note that the text for the link is
the name you assigned to the DataRelation object. Clicking the
white triangle near the right end of the caption bar will return
you to the parent records. You can also return to the parent
rows by pressing Al. The button at the right end of the cap-
tion bar lets you toggle whether the parent record is displayed
above the child records.

C o l u m n s & R o w s | ADO.NET Data Access Components

Figure 11: The form after you click the link to display the employee records.

Figure 10: The form after you run the application and click the plus sign next to
a row in the DataGrid.
Conclusion
Untyped DataSets provide all the features you need, but using
them could be easier. A wizard that would automatically add
the DataTable, DataColumn, and Constraint objects would be
a big help. One of the advantages of the BDP data providers
is that you can see live data a design time. Unfortunately, this
doesn’t work if you create your DataTable objects at design
time, because setting the BdpDataAdapter.Active property to
True tries to create the DataTable. Because you already created
the DataTable, setting Active to True raises an exception.

If you don’t create the DataTable and DataColumn objects,
you cannot connect your user interface controls to the
DataSet at design time. Instead, you’ll have to write code to
connect them at run time. The lesser of these two evils is
clearly to create the DataTable and DataColumn objects at
design time, and forget about viewing live data. Perhaps the
next version of Delphi for .NET will be smart enough to fill
the DataTable if it exists — or create it if it doesn’t.

The files referenced in this article are available for down-
load on the Delphi Informant Magazine Complete Works
CD located in INFORM\2004\MAY\DI200405BT.
15 DELPHI INFORMANT MAGAZINE | May 2004

Bill Todd is president of The Database Group, Inc., a database consulting
and development firm based near Phoenix. He is co-author of four database
programming books, author of more than 100 articles, a contributing editor to
Delphi Informant Magazine, and a member of Team B, which provides technical
support on the Borland Internet newsgroups. Bill is also an internationally known
trainer and frequent speaker at Borland Developer Conferences in the United
States and Europe. Readers may reach him at btarticle@dbginc.com.

mailto:btarticle@dbginc.com

16 DELPHI INFORMANT MAGAZINE | May 2004

What Is a Stream?
A stream is a block of data or a sequence of bytes with
a beginning and an end. At any given time you can have
a reference into the stream, somewhere between its start
and finish. A stream can contain any type of information.
You can write data into a stream, and read data out of
a stream. To manipulate the data contained within a
stream, you use a descendant of the base Stream class
(which is defined in the System.IO namespace). The table
in Figure 1 lists the various types of streams that exist in
the Framework Class Library (FCL).

SYSTEM.IO § STREAMING § SERIALIZATION § DELPHI 8 STUDIO FOR THE .NET FRAMEWORK

. N E T D E V E L O P E R

§ By Xavier Pacheco

In Part I of this series I discussed the

Directory and File classes from the System.IO

namespace. In this installment I’ll cover the

classes that deal with streaming operations, as

well as serialization using formatters.

While streaming classes encapsulate blocks of data, readers
and writers encapsulate the functionality to read and write
information to and from streams. The table in Figure 2 lists
the various reader and writer classes used with streams.

Writing and Reading Text Files
with Streams
To illustrate a simple example of working with
streams, Figure 3 shows how to use the FileStream and
StreamWriter classes for writing text to a text file. Lines
4-5 declare the FileStream and StreamWriter classes, both
defined in the System.IO namespace.

Lines 8-9 create a FileStream instance using one of its
many overloaded constructors. This constructor takes three
arguments: the name of the file to create, FileMode, and
FileAccess. FileMode specifies how the operating system

Exploring the System.IO
Namespace
Part II: Streams and Serialization

Figure 1: System.IO.Stream implementers.

Class Description

BufferedStream Provides a buffering layer to read/write
operations on another stream.

CryptoStream Used to define a cryptographic transform on
any other data stream. This class is defined in
the System.Security.Cryptography namespace.

FileStream Encapsulates a file with a stream that
can be accessed both synchronously and
asynchronously.

MemoryStream Encapsulates a block of memory with a stream.

NetworkStream Provides streamed access to network resources.
The NetworkStream class is defined in the
System.Net.Sockets namespace.

Stream Base class for the other stream classes.

Figure 2: Stream reader and writer classes.

Class Description

BinaryReader Provides functionality for reading primitive data
types as binary values.

BinaryWriter Provides functionality for writing primitive data
types as binary values.

StreamReader Implements the TextReader class for reading
characters from a byte stream.

StreamWriter Implements the TextWriter class for writing
characters to a byte stream.

StringReader Implements the TextReader class for reading
characters from a string.

StringWriter Implements the TextWriter class for writing
characters to a string.

TextReader An abstract class representing a reader that
can read a series of sequential characters.

TextWriter An abstract class representing a writer that can
write a series of sequential characters.

17 DELPHI INFORMANT MAGAZINE | May 2004

should open the file. FileAccess specifies the values for read,
write, or read/write access to the file once it is opened.

In this instance, the file is opened if it exists, or created if
it doesn’t exist, as determined by FileMode.OpenOrCreate.
Additionally, write access is granted as determined by the
FileAccess.Write parameter. Line 11 creates a StreamWriter

instance and associates it with the FileStream by passing the
FileStream instance to the StreamWriter’s constructor. The
table in Figure 4 lists the various FileMode values; the table in
Figure 5 lists the various FileAccess values.

When working with streams there exists the notion of a
stream position. This is the position within the stream to
which data is written to, or read from. In Figure 3, this
position is at the beginning of a file. This is fine if the
code has created a file. However, if the file already exists,
it’s necessary to relocate the file handle to the end of the
file so that further write operations will be appended to
the file, instead of overwriting any existing data. This is
done on line 14 in Figure 3 using the Seek method of the
StreamWriter.BaseStream property. Finally, text is written to
the file using the StreamWriter.WriteLine method.

I should note that another way to open the file for write access,
without having to invoke the Seek method, is to open the file
using the Append value of the FileMode parameter. I didn’t do
this here so that I could illustrate the use of the Seek method.

Figure 6 illustrates the process of reading from a text file
using the FileStream and StreamReader classes. With a few
exceptions, Figure 6 looks similar to Figure 3. First, Line 9
shows that the stream is opened for read access. Addition-
ally, lines 16-18 perform a reading operation on the stream
by invoking the StreamReader.ReadLine method, which, as
the name implies, reads a line from the stream. Note the
use of the StreamReader.Peek method. This method returns
the next character to be read from the stream, or -1 to
indicate that there are no more characters in the stream.

. N E T D e v e l o p e r | Exploring the System.IO Namespace

1: procedure TWinForm.Button1_Click(
2: Sender: System.Object; e: System.EventArgs);
3: var
4: MyFileStream: FileStream;
5: MyStreamWriter: StreamWriter;
6: begin
7: // Create and write the file.
8: MyFileStream := FileStream.Create('c:\mydemo.txt',
9: FileMode.OpenOrCreate, FileAccess.Write);
10: try
11: MyStreamWriter :=
12: StreamWriter.Create(MyFilestream);
13: try
14: MyStreamWriter.BaseStream.Seek(
15: 0, SeekOrigin.End);
16: MyStreamWriter.WriteLine('Hello Delphi 8');
17: MyStreamWriter.WriteLine(
18: 'Hello Delphi 8 again');
19: finally
20: MyStreamWriter.Close;
21: end;
22: finally
23: MyFileStream.Close;
24: end;
25: end;

Figure 3: Writing text to a file using FileStream and StreamWriter.

Figure 4: FileMode values.

Value Description

Append Opens or creates a file and seeks to
the end of the file. Must be used in
conjunction with FileAccess.Write.
Requires FileIOPermissionAccess.Append.

Create Creates a new file, overwriting an existing file.
Requires FileIOPermissionAccess.Write and
FileIOPermissionAccess.Append.

CreateNew Creates a new file. If the file exists, it raises an
exception. Requires FileIOPermissionAccess.Write.

Open Opens an existing file. FileMode.Access must
enable the opening of this file. Raises an
exception if the file does not exist. Requires
FileIOPermissionAccess indicated by the
FileMode parameter.

OpenOrCreate Opens the file if it exists. Creates a new file if it
does not exist. Requires FileIOPermissionAccess
indicated by the FileMode parameter.

Truncate Opens an existing file and sets its size to zero.
Requires FileIOPermissionAccess.Write.

Figure 5: FileAccess values.

Value Description

Read Data can be read from the file.

Write Data can be written to the file.

ReadWrite Data can be read from or written to the file.

1: procedure TWinForm.Button2_Click(Sender: System.Object;
2: e: System.EventArgs);
3: var
4: MyFileStream: FileStream;
5: MyStreamReader: StreamReader;
6: begin
7: // Create and read from the file.
8: MyFileStream := FileStream.Create('c:\mydemo.txt',
9: FileMode.OpenOrCreate, FileAccess.Read);
10: try
11: MyStreamReader :=
12: StreamReader.Create(MyFilestream);
13: try
14: MyStreamReader.BaseStream.Seek(
15: 0, SeekOrigin.Begin);
16: while MyStreamReader.Peek <> -1 do
17: TextBox1.Text := TextBox1.Text +
18: MyStreamReader.ReadLine +Environment.NewLine;
19: finally
20: MyStreamReader.Close;
21: end;
22: finally
23: MyFileStream.Close;
24: end;
25: end;

Figure 6: Reading text from a file using FileStream and StreamReader.

Figure 7: SeekOrigin enumeration values.

Value Description

Begin Specifies the beginning of the stream.

Current Specifies the stream’s current position.

End Specifies the end of the stream.

18 DELPHI INFORMANT MAGAZINE | May 2004

The code in Figures 3 and 6 employs the SeekOrigin enumera-
tion with the Seek method. This enumeration may be one of
the values listed in the table in Figure 7.

Writing and Reading Binary Files
with Streams
When writing and reading to/from binary files, you must
use a different stream reader and writer. Specifically, you
use the BinaryReader and BinaryWriter classes. Figure 8
illustrates the process of writing different primitive data
types to a binary file. To do this, it uses the BinaryWriter
class’ heavily overloaded Write method, with each variation
writing a different primitive type.

Figure 9 illustrates how to read binary data from a file. In the
example, the types Boolean, string, Integer, Double, and an
array of Char are read from a file. The data contained in the
binary file is read using the BinaryReader class, which also
contains a matching Read method for each primitive data type.
For illustrative purposes, the data read is used to populate a
TextBox control. Note the use of the MyBinReader.ReadChars
method, which allows you to specify a number of characters to
read from the stream into an array of Char.

Asynchronous File Access with Streams
Often when processing a file, you want to enable the user to
continue using the application. Streams give you the ability
to do this, as illustrated in Listing One (on page 20). This
example, which is taken from my upcoming book, Delphi
for .NET Developer’s Guide, contains a Windows Form with
ListBox and TextBox controls. The example illustrates using
a callback function to write data to the ListBox control, and
— while doing this — allowing the user to enter text into
the TextBox control.

Listing One is a partial listing of the actual example. Stream
classes (FileStream, MemoryStream, etc.) have two methods for
asynchronous reading and writing of the stream: BeginRead and

BeginWrite. The use of BeginRead is shown on lines 41 and 42 of
Listing One. BeginRead takes the parameters listed in Figure 10.

To begin asynchronous file access, you must invoke the
BeginRead or BeginWrite methods on a specified stream, pass-
ing the parameters listed in Figure 10. Notice that the example
in Listing One passes the callback function MyCallBack to
the BeginRead method. Also note that the TFileState object
is passed as the last parameter. This object can be accessed
within the callback function, as illustrated in lines 48-60.

The callback function is called once, after the stream has been
read from. To illustrate that the user still has access to the
application, MyCallBack simply performs a loop 10 times and
writes a string to the ListBox control. It then pauses for about
1.5 seconds after each write. Also, notice how the TFileState
instance is accessed from the Result.AsyncState property. The
Result parameter is declared as an IAsyncResult interface.
(Because this example assumes it exists, you need to make
sure there is a file named demo.txt on your C: drive.)

Serialization and Deserialization
Having the ability to save and retrieve data to and from files or
other mediums can be very useful. Beyond this, however, is the
ability to save and retrieve your .NET objects, including their
state. Serialization is the process of converting objects into a
stream of bytes that can be persisted onto a medium, or trans-
ferred to another process — even across a network to another
computer (this is known as remoting). Deserialization is the
reverse process of reading the stream of bytes, reconstructing
the serialized object and its state.

. N E T D e v e l o p e r | Exploring the System.IO Namespace

1: procedure TWinForm.Button3_Click(
2: Sender: System.Object; e: System.EventArgs);
3: const
4: cAry: array[1..8] of char =
5 ('o', 'h', ' ', 'y', 'e', 'a', 'h', '!');
6: var
7: MyFileStream: FileStream;
8: MyBinWriter: BinaryWriter;
9: begin
10: MyFileStream := FileStream.Create('bindemo.dat',
11: FileMode.OpenOrCreate, FileAccess.ReadWrite);
12: try
13: MyBinWriter := BinaryWriter.Create(MyFileStream);
14: try
15: MyBinWriter.Write(True);
16: MyBinWriter.Write(
17: 'Unten Gleeben Globbin Globin');
18: MyBinWriter.Write(23);
19: MyBinWriter.Write(23.23);
20: MyBinWriter.Write(cAry);
21: finally
22: MyBinWriter.Close;
23: end;
24: finally
25: MyFileStream.Close;
26: end;
27: end;

Figure 8: Writing binary data to a file.

1: procedure TWinForm.Button4_Click(
2: Sender: System.Object; e: System.EventArgs);
3: var
4: MyFileStream: FileStream;
5: MyBinReader: BinaryReader;
6: MyCharAry: array of Char;
7: i: Integer;
8: begin
9: MyFileStream := FileStream.Create('bindemo.dat',
10: FileMode.Open, FileAccess.Read);
11: try
12: MyBinReader := BinaryReader.Create(MyFileStream);
13: try
14: TextBox1.Text := TextBox1.Text +
15: System.String.Format('Boolean: {0}',
16: [MyBinReader.ReadBoolean]) +
17: Environment.NewLine;
18: TextBox1.Text := TextBox1.Text +
19: System.String.Format('String: {0}',
20: [MyBinReader.ReadString])+Environment.NewLine;
21: TextBox1.Text := TextBox1.Text +
22: System.String.Format('Integer: {0}',
23: [MyBinReader.ReadByte]) + Environment.NewLine;
24: TextBox1.Text := TextBox1.Text +
25: System.String.Format('Double: {0}',
26: [MyBinReader.ReadDouble])+Environment.NewLine;
27: MyCharAry := MyBinReader.ReadChars(8);
28: for i := Low(MyCharAry) to High(MyCharAry) do
29: TextBox1.Text := TextBox1.Text + MyCharAry[i];
30: finally
31: MyBinReader.Close;
32: end;
33: finally
34: MyFileStream.Close;
35: end;
36: end;

Figure 9: Reading binary data from a file.

19 DELPHI INFORMANT MAGAZINE | May 2004

You must perform one of two tasks to make serialization
work. The class that you want to serialize can be
declared with the [Serializable] attribute, or the class can
implement the ISerializable interface. This article will
discuss the former, easier method. Examine the following
class declaration:

[Serializable]
TEmployee = class(System.Object)
public
 FirstName: string;
 LastName: string;
 HireDate: DateTime;
end;

The CLR (Common Language Runtime) knows how to
handle the base class and any other classes (types) that are
serializable, such as those declared in TEmployee. You can
prevent a field from being serialized by defining it with the
[NonSerialized] attribute, as shown here:

[NonSerialized]
LastName: string;

Because of how the CLR serializes classes, it isn’t necessary
for the CLR to serialize associated classes in any particular
order. The reconstruction process will take care of reestab-
lishing the original associations.

Once a class is declared as being serializable, one must
determine the format to which the class will be persisted.
This is done using a formatter, or a class that implements the
IFormatter interface. There are two pre-defined formatters:
BinaryFormatter (defined in the System.Runtime.Serialization.
Formatters.Binary namespace) and SoapFormatter (defined in
the System.Runtime.Serialization.Formatters.Soap namespace).
To use BinaryFormatter, simply add its namespace to your
uses clause. To use SoapFormatter, add the namespace and
the reference to the System.Runtime.Serialization.Formatters.
Soap.dll assembly through the Delphi 8 Add Reference dialog
box.

Figure 11 illustrates the process of serializing and deserial-
izing an array of the TEmployee class previously declared.
A .NET Array type is already serializable; therefore, it’s not
necessary to declare it with the [Serializable] attribute. Lines
14-20 simply create two TEmployee instances, and popu-
late the array with them. Lines 22-28 perform the process
of serializing the EmpAry object. Note how this is done
by passing the FileStream and the object to serialize to the
SoapFormatter.Serialize method. After this step, you should be

able to load the emp.xml file and view the resulting XML.
Lines 31-41 in Figure 11 recover the information from the
file, and reconstruct the EmpAry instance by invoking
the SoapFormatter.Deserialize method, which returns a
System.Object type. Therefore, it must be hard-cast to the
type being deserialized. Although not shown here, keep
in mind that it is possible for the Deserialize method to
return nil. Therefore, it’s recommended that a proper test is
performed to avoid a NullReferenceException from occurring.

There is much that can be discussed about serialization
that is beyond what can be covered in this article. Look
for more in-depth articles about this topic in future issues
of Delphi Informant.

The three projects referenced in this article are available
for download on the Delphi Informant Magazine Complete
Works CD located in INFORM\2004\MAY\DI200405XP.

Figure 10: BeginRead parameters.

Parameter Description

Buffer Represents the buffer into which data will be read.

Offset A byte offset in the buffer; the starting point to
which data will be written.

Count Maximum bytes to read from the stream.

Callback A callback function that’s invoked when the read
operation is complete.

State An object used to distinguish read requests.

Xavier Pacheco is the president of Xapware Technologies Inc., provider of
Active! Focus — a practical solution for managing software projects and
requirements management. Xavier is the co-author of Delphi 6 Developer’s
Guide and the upcoming Delphi for .NET Developer’s Guide. Xavier is
available for consulting and training engagements. You may contact him at
xavier@xapware.com or visit his company Web site at www.xapware.com.

1: procedure TWinForm.Button1_Click(
2: Sender: System.Object; e: System.EventArgs);
3: const
4: c_fmt = 'First name: {0}, Last name {1}, ' +
5: 'Hire Date {2}';
6: var
7: fs: FileStream;
8: soFmt: SoapFormatter;
9: Emp: TEmployee;
10 EmpAry: TEmployeeArray;
11: i: Integer;
12: begin
13: // Create the classes and serialize them.
14: SetLength(EmpAry, 2);
15: Emp := TEmployee.Create('Xavier', 'Pacheco',
16: System.DateTime.Today);
17: EmpAry[0] := Emp;
18: Emp := TEmployee.Create(‘Frank', 'Smith',
19: System.DateTime.Today);
20: EmpAry[1] := Emp;
21:
22: fs := FileStream.Create('emp.xml', FileMode.Create);
23: try
24: soFmt := SoapFormatter.Create;
25: soFmt.Serialize(fs, EmpAry);
26: finally
27: fs.Close;
28: end;
29:
30: // Read Back Serialized Information.
31: fs := System.IO.File.OpenRead('emp.xml');
32: try
33: soFmt := SoapFormatter.Create;
34: EmpAry := TEmployeeArray(soFmt.Deserialize(fs));
35: for i := Low(EmpAry) to High(EmpAry) do
36: ListBox1.Items.Add(System.String.Format(c_fmt,
37: [EmpAry[i].FirstName, EmpAry[i].LastName,
38: EmpAry[i].HireDate]))
39: finally
40: fs.Close;
41: end;
42: end;

Figure 11: Serialization/deserialization example.

. N E T D e v e l o p e r | Exploring the System.IO Namespace

www.xapware.com
mailto:xavier@xapware.com

2

. N E T D e v e l o p e r | Exploring the System.IO Namespace
Begin Listing One — Asynchronous
File Access

1: TWinForm = class(System.Windows.Forms.Form)
2: strict private
3: procedure Button1_Click(Sender: System.Object;
4: e: System.EventArgs);
5: private
6: procedure MyCallback(Result: IAsyncResult);
7: end;
8:
9: TByteArray = array of Byte;
10:
11: TFileState = class(System.Object)
12: public
13: FFilePath: string;
14: FByteArray: TByteArray;
15: FFStream: FileStream;
16: public
17: constructor Create(aFilePath: string;
18: aByteArraySize: Integer;
19: aFileStream: FileStream);
20: property FilePath: string read FFilePath;
21: property FStream: FileStream read FFStream;
22: property ByteArray: TByteArray read FByteArray;
23: end;
24:
25: implementation
26:
27: procedure TWinForm.Button1_Click(
28: Sender: System.Object; e: System.EventArgs);
29: var
30: MyFileStream: FileStream;
31: MyFileState: TFileState;
32: MyFileInfo: FileInfo;
33: begin
34: MyFileStream := FileStream.Create('c:\demo.txt',
35: FileMode.Open, FileAccess.Read, FileShare.Read,
36: 1, True);
37: try
38: MyFileInfo := FileInfo.Create('c:\demo.txt');
39: MyFileState := TFileState.Create('c:\demo.txt',
40: MyFileInfo.Length, MyFileStream);
41: MyFileStream.BeginRead(MyFileState.ByteArray, 0,
42: MyFileInfo.Length, MyCallBack, MyFileState);
43: finally
44: MyFileStream.Close;
45: end;
46: end;
47:
48: procedure TWinForm.MyCallBack(Result: IAsyncResult);
49: var
50: MyState: TFileState;
51: i: Integer;
52: begin
53: MyState := Result.AsyncState as TFileState;
54: for i := 1 to 10 do begin
55: ListBox1.Items.Add(System.String.Format(
56: 'In callback for File {0}',[MyState.FilePath]));
57: Thread.Sleep(1500);
58: end;
59: MyState.FStream.Close;
60: end;
61:
62: { TFileState }
63: constructor TFileState.Create(aFilePath: string;
64: aByteArraySize: Integer; aFileStream: FileStream);
65: begin
66: inherited Create;
67: FFilePath := aFilePath;
68: SetLength(FByteArray, aByteArraySize);
69: FFStream := aFileStream;
70: end;

End Listing One
0 DELPHI INFORMANT MAGAZINE | May 2004

ENCRYPTION § RSA § DELPHI 4-7

G R E A T E R D E L P H I

§ By Fernando Vicaria
 RSA Encryption
Part I: From Prime Numbers to RSA Encryption
We’ll wrap up this topic
in Part II with an imple-
mentation for a large
integer type that is lim-
ited only by the memory
available in the system.
With this type we’ll be able to create and use integers
of literally astronomical size. This new type will be used
in your own implementation of the RSA encryption algo-
rithm. (By the way, the three-letter acronym, RSA, is
a result of the names of its inventors: Ron Rivest, Adi
Shamir, and Leonard Adleman.)

For those of you who are not math inclined, or who are
not really into the historical and theoretical aspects, feel
free to jump ahead to the implementation section. This
series is probably of most significance to those of you

 This article initiates a two-part series where

we take a look at encryption, but from a

very different perspective. Starting with

the simple concept of prime numbers, we’ll build

a solid theoretical basis that culminates with the

implementation of our own encryption system

— one that can potentially be made as secure as

anything available in the software industry today.

To get from here to there we’ll use a considerable

amount of math, although you should’ve seen

most — if not all — of it in high school.

“Having a detaile
things really work

intend to keep you
one step ahead
21 DELPHI INFORMANT MAGAZINE | May 2004
working with encryption or security in general. Having a
detailed knowledge of how things really work (and why)
is essential if you intend to keep your security systems
one step ahead of hackers.

What Are Prime Numbers?
Prime numbers have been of interest since the ancient Greek
philosophers. However, they were not of interest for theoreti-
cal purposes until last century, when those studying cryp-
tography began using them.

Let’s start with the simplest definition of a prime num-
ber. In book VIII of Elements, Euclid defined a prime as
a number that has no whole-number divisors other than
1 and the number itself. A few examples would be 2, 3,
5, 11, 13, etc. On the other hand, a number that is not a
prime is said to be a composite.

Another important defi-
nition is that of rela-
tive primes. A prime
number is considered
a relative prime to any
other number if it does
not divide that number.

In other words, if a prime number p is relative prime to a
number n then: n mod p ≠ 0.

From the above definitions we can extract the following
results, or propositions as Euclid called them:
1) If a prime number p divides a product mn then p divides

at least one of the two numbers m, n (see Figure 1).
2) Every natural number is either prime or else can be

expressed as a product of primes in a way that is unique,
apart from the order in which they are written.

3) There are infinitely many prime numbers.

d knowledge of how
 is essential if you
r security systems
 of hackers.”

G r e a t e r D e l p h i | RSA Encryption

Proposition 1
If a prime number p divides a product mn then p divides
at least one of the two numbers m, n.

Proof
Let the two numbers m and n multiplied by one another
make another number o, and let any prime number p
divide o.

We must prove that p divides m or n.

Let’s assume that p does not divide m, therefore p and m
are relative primes.

Now let’s make another number e be such as e = mn div
p (or the number of units that p divides mn).

Since p divides mn according to e, then pe = mn. There-
fore, p/m = n/e.

But p is relative prime to m. Therefore, they are the least of
those that have the same ration with them. And the least
divides the numbers that have the same ratio. That is, p
divides n (and m divides e).

Similarly, we can also prove that if p does not divide n
then it must divide m.

Q.E.D.

Figure 1: Product factorization with a prime.

Proposition 2
Every natural number is either prime or can be uniquely
factored as a product of primes in a unique way.

Proof
Let’s prove this using contradiction.

Let’s assume there are numbers that cannot be written as a
product of primes. Therefore, there must exist the smallest
of such numbers; we’ll call it n.

By definition n must be a natural number greater than 1.
So n = ab, where a and b are natural numbers such as
a > 1 and b < n.

Therefore, a and b are smaller than n, so a and b can be
factored into primes.

By substitution n can be factored by primes. This contra-
dicts the assumption that there exists composite numbers
that cannot be factored into primes.

Conclusion: All natural numbers are either prime or can be
written as a product of prime numbers.

Now let’s prove that this product is unique, again using
contradiction.

Let’s assume there are numbers that can be factored into
primes in at least two distinct ways. Then there must exist the
smallest of such numbers, n, where n can be represented by:

n = p1 p2 ... pm or n = q1 q2 ... qn

Let’s now select one of the members on the left side, p1.

We can say that p1 divides n and therefore it divides q1 q2 ... qn.

That means that n / p1 = q1 q2 ... qn / p1.

But from Proposition 1, if p1 divides the product q1 q2 ... qn
then it must divide at least one of its members. Since all mem-
bers on the right side of the equation are primes we must have
that for a qj (with 1 ≤j ≤n) the following equality holds:

p1 = qj

We can, without loss of generality, assume j = 1. There-
fore, p1 = qj.

The result of n/p1 is a number smaller than n and con-
sequently, from our initial assumption, it cannot be
factorized in more than one unique way. Therefore, the
sequences p2 ... pm and q2 ... qn contain the same primes,
possibly different only in their order.

Conclusion
There is only one way to factorize a number into primes.

Q.E.D.

Figure 2: The Fundamental Theorem of Arithmetic.
As promised, I won’t leave you wondering (how or why)
and will now prove each one of these results so that we can
freely use them later. Feel free to skip the proofs if you want
to take Euclid’s word for granted.

Proposition 2 (see Figure 2) is also known as the Fundamen-
tal Theorem of Arithmetic. Proposition 1 immediately implies
the Fundamental Theorem of Arithmetic, although Euclid
never stated it explicitly. The first time it was formulated was
in 1801 by Gauss in his Disquisitiones Arithmeticae.

We’ll prove Proposition 2 in two steps. First we’ll prove
that a number can always be factored into primes, and
then we’ll show that this process is unique; that is, there
is only one prime factorization for each number. Once
again, feel free to skip it.

Taken together, the first two propositions form the build-
ing blocks of all natural numbers, much like the physi-
cist’s atoms. Knowing the prime number factorization of
a number gives complete knowledge about all factors of
that number.

Now that we’ve learned some of the fundamental properties
of prime numbers we need to learn how to find them, and
— most importantly — how to prove they are in fact primes.

Finding Primes
How do we go about finding primes? There are many
ways to find primes, and their efficiency usually depends
22 DELPHI INFORMANT MAGAZINE | May 2004

Proposition 3
There are infinitely many prime numbers.

Proof
Let’s start with the list: p1, p2, p3 ... of all known primes.
We must prove that this list continues forever.

Let’s assume that we have listed all primes up to some pm.

Now consider a number p such as:

p = p1 p2 ... pm + 1

If p happens to be a prime, then p is a prime bigger then
pm and the list can continue (note that p might not be the
next prime after pm, in which case p cannot be taken to be
pm+1).

If p is not a prime, then it must be evenly divisible by a
prime (Proposition 2). But none of the primes p1, p2, p3 ...
pm divides p. If you carry out such division you always end
up with a remainder of 1.

Therefore, p must be divisible by a prime bigger than all
primes up to pm.

Conclusion
We can always find a bigger prime for any given
list p1 p2 ... pm.

Q.E.D.

Figure 3: The infinitude of primes.

program Eratosthenes;

{$APPTYPE CONSOLE}

uses
 SysUtils, Windows;

var
 s: string;
 i, j, p: LongWord;
 Range, Count, Width: LongWord;
 Start, Finish: LongWord;
 a: array of LongWord;
begin
 // This is a simple prime-number generator that can
 // generate all the primes <= 2147107031 = 2^31 - 376617.
 // This is the maximum range you can get with the
 // provided RTL/VCL units.
 Write('Enter range (from 0 to 2147483647): ');
 ReadLn(s);
 Range := StrToInt(s);
 Width := Length(s);
 Count := 0;
 Start:= GetTickCount;
 SetLength(a, Range + 1);
 // 0 and 1 are not considered prime by definition.
 a[0] := 0;
 a[1] := 0;
 for i := 2 to Range do
 a[i] := 1;
 p := 2;
 while p < Range do begin
 j := 2 * p;
 while (j <= Range) do begin
 a[j] := 0;
 j := j + p;
 end;
 repeat
 p := p + 1;
 until a[p] = 1;
 end;
 for i := 2 to Range do
 if a[i] <> 0 then begin
 Write(i : Width, ' ');
 Inc(Count);
 end;
 WriteLn;
 WriteLn('Total no. are ' + IntToStr(Count));
 WriteLn;
 Finish := GetTickCount - Start;
 WriteLn(FloatToStrF(
 Finish/1000, ffFixed , 0, 2) + ' seconds');
 ReadLn;
end.

Figure 4: Sieve of Eratosthenes method.

G r e a t e r D e l p h i | RSA Encryption
on the size of the primes in which we are interested, or
on the probability of these numbers truly being primes
(see Figure 3).

Eratosthenes came up with an algorithm in 280 BC, known
today as the Sieve of Eratosthenes, for finding prime num-
bers. To verify that n is a prime, you look at all numbers
from 2 to n. Then you eliminate all multiples of 2 up to n.
Then you go on to 3 and do the same, and then the next
number, which is still available, etc. If n is still left when
you reach the square root of n, then n is a prime. Although
the numbers resulting from this method are sure to be
primes, this algorithm is very slow and has exponential
complexity, meaning it runs exponentially in the number of
digits in the number n.

Another good method for finding small primes is the Trial
Division method, which, as the name suggests, is based
on the trial division of a given number n by all natural
numbers from 2 to √n. If we find a factor the number is a
composite, otherwise it’s a prime.

Figures 4 and 5 show Delphi implementations of the Sieve of
Eratosthenes and Trial Division methods.

Mathematicians for centuries have been trying to find
equations for generating prime numbers, but their success
has been slow and valid to only a small range of natural
23 DELPHI INFORMANT MAGAZINE | May 2004
numbers. Leonard Euler, the Swiss mathematician, came
up with the following equation:

f(x) = x² + x + 41, which is prime for x = 0, 1, 2, .. , 39

This quadratic was the record holder for centuries as a
consecutive, distinct quadratic prime-producer for an initial
range of input values. It is not, however, the current record
holder. That distinction goes to this function:

f(x) = 36x² - 810x + 2753, which is prime for x = 0, 1, ... , 44

As you have probably noticed, these functions are also
very limiting in their range and are of very little or no
practical use.

G r e a t e r D e l p h i | RSA Encryption

program TrialDiv;

{$APPTYPE CONSOLE}

uses
 SysUtils, Windows;

var
 s: string;
 i, j: LongWord;
 Factors: Boolean;
 Range, Count, Width: LongWord;
 Start, Finish: LongWord;
begin
 Write('Enter range (from 0 to 2147483647): ');
 ReadLn(s);
 Range := StrToInt(s);
 Width := Length(s);
 Count := 0;
 Start:= GetTickCount;
 // Try all numbers from 2 (1 is not considered prime)
 // up to Range.
 for i := 2 to Range do begin
 // Reset factors count.
 Factors := False;
 // Try dividing it by 2 up to the square root of i.
 for j := 2 to Trunc(sqrt(i)) do
 if (i mod j = 0) then begin
 Factors := True;
 Break;
 end;
 // If number has no divisors then it’s PRIME!
 if not Factors then begin
 Write(i : Width, ' ');
 Inc(Count);
 end;
 end;
 WriteLn;
 WriteLn('Total no. are ' + IntToStr(Count));
 WriteLn;
 Finish := GetTickCount - Start;
 WriteLn(FloatToStrF(
 Finish/1000, ffFixed , 0, 2) + ' seconds');
 ReadLn;
end.

Figure 5: Trial Division method.

Proposition
If p is a prime and if a is any integer, then ap = a (mod
p). In particular, if p does not divide a, then ap-1 = 1.

Proof
Start by listing the first p -1 positive multiples of a:

a, 2a, 3a, ... (p -1)a

Suppose that ra and sa are the same modulo p, then we
have r = s (mod p), so the p-1 multiples of a above are
distinct and nonzero; that is, they must be congruent to 1,
2, 3, ..., p-1 in some order. Multiply all these congruences
together and we find:

a.2a.3a.....(p-1)a = 1.2.3.....(p-1) (mod p)

or better:

a(p-1)(p-1)! = (p-1)! (mod p).

Divide both sides by (p-1)! to complete the proof.

Conclusion
There is only one way to factorize a number into primes.

Q.E.D.

Figure 6: Fermat’s Little Theorem.
To be of any real use, we need a method that can produce
an infinite number of primes, and of any size we want. The
best way found to deal with this problem, since there are no
formulas for finding all prime numbers in sequence, was to
instead find numbers that are “very likely” to be primes.

Primality Test
If we are going to use our primes for industrial uses (e.g.
encryption) we often do not need to prove they are prime.
It may be enough to know that the probability they are
composite is less than a given percentage (e.g. 0.000000
000000000000000001%). In this case we can use (strong)
probable primality tests.

Most of these tests are based on what is known as Fer-
mat’s Little Theorem, which states:

If p is a prime and if a is any integer, then ap = a (mod
p). In particular, if p does not divide a, then ap-1 = 1.

Figure 6 presents a proof to Fermat’s Little Theorem. It’s
important to note that Fermat’s theorem is a composite-
24 DELPHI INFORMANT MAGAZINE | May 2004
ness test, and not a primality test; that is, it tells you for
sure if a number is a composite or not a prime. If the test
is positive the number is guaranteed to be a composite,
otherwise it might be a prime or not. However, statisti-
cally speaking, this method is good enough for many
practical applications, including encryption.

Some early articles call all numbers satisfying this test
pseudo-primes, but now the term pseudo-prime is prop-
erly reserved for composite probable-primes.

There are 1,091,987,405 primes less than 25,000,000,000;
but only 21,853 pseudo-primes base two, which gives us an
error probability less than 0.00009%. We can reduce this
margin of error even further by using multiple bases. This is
exactly what the Miller-Rabin method does (see Figure 7).

The Miller-Rabin primality test gives us a proved prob-
ability of error less than 1/s-2 where s is the number of
bases we tried.

Factoring Primes
The dual problems of factoring integers and testing pri-
mality have surprisingly many applications for a problem
long suspected of being only of mathematical interest. As
we’ll see below, the security of the RSA public-key cryp-
tography system is based on the computational intracta-
bility of factoring large integers. (Note: As a more modest
application, hash table performance typically improves
when the table size is a prime number. To get this ben-
efit, an initialization routine must identify a prime near
the desired table size.)

function MillerRabin(const n: TLargeInteger;
 const s: Integer): Boolean;
var
 i: Integer;
 r: TLargeInteger;
begin
 // n must be odd.
 if n mod 2 = 0 then begin
 Result := False;
 Exit;
 end;
 for i := 1 to s do begin
 // Get a random number from the set (2, 3,...,n+1).
 r := IRandomRange(n) + 2;
 // Should use Witness here but is not correct yet.
 if not PseudoPrime(n, r) then begin
 Result := False;
 Exit;
 end;
 end;
 Result := True;
end;

Figure 7: The Miller-Rabin primality test.

// Returns the first factor found for any given number
// lying in the sequence { 2,3, 6k±1 } where k =1 to
// sqrt(n) if the number is a composite; n if the number
// is prime, 0 if the number is less than 2.
function Factor(const n: TLargeInteger): TLargeInteger;
var
 i, t: TLargeInteger;
begin
 if n < 2 then begin
 Result := 0;
 Exit;
 end;
 // If it's even and greater than 3 then it's not prime.
 if ModExp(n, 1, 2) = 0 then begin
 Result := 2;
 Exit;
 end;
 // Try dividing it by 3 up to the square root of i.
 t := ISqrt(n);
 i := 3;
 while i <= t do begin
 if ModExp(n, 1, i) = 0 then begin
 Result := i;
 Exit;
 end;
 i := i + 2;
 end;
 // Number is prime.
 Result := n;
end;

Figure 8: Integer factorization using the Square Root Method.

G r e a t e r D e l p h i | RSA Encryption
As you would imagine, factoring and primality testing are
related problems. However, they are quite different algo-
rithmically. In the sections above, we saw that we can
demonstrate that an integer is composite (i.e. not prime)
without actually giving the factors. To convince yourself of
the plausibility of this, note that you can demonstrate the
compositeness of any nontrivial integer whose last digit is
0, 2, 4, 5, 6, or 8 without doing the actual division.

The simplest solution to factorization is also the simplest
one used in primality tests; that is, brute-force trial divi-
sion. However, this is extremely slow for big numbers and
therefore impractical for any real application.

Another solution, a bit faster than trial-division, is the
Square Root Method. Figure 8 shows one of the possible
implementations for this method. It’s okay for small
numbers (15 digits or less), but will become too slow for
anything larger than that. (Note: For encryption purposes,
anything less than 150 digits is considered small.)

TLargeInteger is any valid implementation of a large inte-
ger type. ISqrt(n) returns the integer part of the square
root of n and ModExp(n,e,p) raises the number n to the e
power, then calculates the mod p of the result.

The fastest known algorithm used in factorization is the
Number Field Sieve. It uses randomness to construct a
system of congruences, the solution of which usually
gives a factor of the integer. The method was developed
by Pollard and was used to factor the RSA-130 number
(such a feat required enormous amounts of computation).

As you can see, the strength of encryption algorithms
such as RSA relies on the fact that it’s really hard to
decompose a large number into its factors. These algo-
rithms use an integer n made of two or more primes,
such as: n = p x q or n = p x q x r x s where p, q, r,
and s are large prime numbers. Breaking n into its factors
requires an enormous amount of computation that can
last for many years (even when using multiple machines).
25 DELPHI INFORMANT MAGAZINE | May 2004
To demonstrate how secure such algorithms can be, cash
prizes are usually offered to those who manage to factor-
ize these numbers.

Message Encryption
This huge disparity between the ease of finding large
prime numbers, and the difficulty of factoring large
numbers, is fully exploited when devising secure forms of
public key cipher systems.

Figure 9 illustrates a typical modern cipher system
used for encrypting messages that have to be sent
over insecure electronic communication channels. The
basic components of the system are two programs, an
encryptor and a decryptor. Security for the sender and
the receiver is achieved by requiring a key for both
encryption and decryption.

Typically the key will consist of one hundred or more
digits. The security of the system depends on keeping the
key secret. This method immediately raises the following
question: How can we send the key to the receiver of our
messages? If we decide to mail it we need to trust the
carrier, and having to always physically meet the receiver
may not be practical or cost efficient.

To resolve this problem, Whitfield Diffie and Martin
Hellman in 1975 proposed the idea of a public key
cryptosystem (PKS). In a PKS, each potential message
receiver A (which would be anyone who intends to
use the system) uses a program that will produce not
one, but two keys: an encryption key and a decryption
key. The encryption key is made public to all those
interested in sending A a message, while the decryption
key is kept secret.

G r e a t e r D e l p h i | RSA Encryption

b
c
s

������

���

����������
�������

������� ����������
�������

������������
�������

���

��������

Figure 9: A typical public-key encryption system.
Although the basic idea behind such a system is simple,
designing it is not. The one originally proposed by Diffie
and Hellman turned out to be not as secure as they had
thought, but a method devised a short time later by
Rivest, Shamir, and Adleman proved to be much more
robust, and the RSA system, as it’s known, is now used
widely in international banking, online transactions, and
military and satellite communications, to name just a few.

The main difficulty for anyone designing such a system is
that the encryption process should disguise the message
to such an extent that it is impossible to decode it without
the decryption key. But because
the essence of the system, and
indeed of any cipher system, is
that the authorized receiver can
decrypt the encoded message, the
two keys must be mathematically
related. The receiver’s program and decryption key
should exactly undo the effect of the sender’s program
and encryption key, so it should be theoretically possible
to obtain the decryption key from the encryption key,
provided one knows how the cipher programs work.

The trick is to ensure that, although it is theoretically
possible to recover the decryption key from the publicly
available encryption key, it is practically impossible. In
the case of one-way ciphers such as RSA, the receiver’s
secret decryption key consists of two large prime numbers
(at least 75 digits each), and the public key consists of
their product (a 150-digit number).

With current technology, it’s practically impossible to
factor numbers of that size in a reasonable time. As I
mentioned in the previous section, efforts to develop new
algorithms to factorize such numbers are usually subjects
for doctorate theses and can bring instant fame for those
who succeed. The current record for factorization is
around 155 digits. (Note: New algorithms designed for
quantum computers, when and if they ever get to build
one, may render this sort of encryption system obsolete,
but until then RSA will continue to be one of the safest
encryption systems available.)

“Prime num
of interest sin

Greek philo
26 DELPHI INFORMANT MAGAZINE | May 2004
The RSA Algorithm
With the facts presented up to this point we can now
start a formal description of the algorithm behind RSA.
The best way to describe it is using the simplest case
possible: Where a sender, call it S, wants to send a
message to a receiver, call it R. For the particular case
of this example we will assume that the message is a
two-digit integer.

Before it can receive secure messages from S or anyone else
interested in sending messages, R will need to generate a
public key. To do this R must find two large prime numbers,

call them p and q, having at
least 75 digits, then multiply
them to make a number n such
as n = p.q. This number will be
R’s public key (p and q should
be kept secret). Besides the

generation of the public key, R should agree with S on a
method to encode the actual message text.

We will now break the process of encrypting and
decrypting the message into steps:
 After R selected the two primes. We’ll use p = 17 and

q = 31 for this example, but keep in mind that in real-
life situations this number must be at least 75 digits.

 R now generates n by multiplying p and q. Such as n
= 17x31; that is n = 527. This will be R’s public key.

 R now chooses another number e which must be
relative prime to (p - 1)(q - 1), which is 16x30 or 480.
By the definition of relative prime presented earlier
in this article we can quickly find a few suitable
candidates: 7, 11, 13, 14, etc. Note that e doesn’t need
to be a prime, or an odd number. Finding e comes
down to finding a number e such as the Greatest
Common Divisor between e and 480 is 1. That is
GCD(e, 480) = 1. Let’s pick e = 11 for this example.
The number e is also part of the public key and
therefore R will have to make it public together with n.

 With the knowledge of n and e the sender S can
now prepare to send the message to R. Let’s call this
message M. The message in our case is a single two-
digit number. For example: M = 70.

ers have been
e the ancient
ophers.”

Fernando Vicaria is a Senior Software Engineer currently based in
Santa Cruz, CA. He was an active member of the development team for
C++Builder, Delphi, and C#Builder at Borland. He is also a freelance
technical author for Delphi and C++Builder issues. Fernando specializes
in VCL and .NET frameworks. When he’s not at work he’s probably surfing
at some secret spot in Northern California. He can be reached via e-mail at
fernando@vicaria.com.

G r e a t e r D e l p h i | RSA Encryption
 S now encrypts the message by applying a sequence
of mathematical operations over M that will result in
the encrypted message C:

C = Me mod n, which for this example becomes
 C = 7011 mod 527 or C = 8.

 Now R, after receiving the encrypted message C, must
decrypt it using the secret
pair of prime numbers used
to create the public key. R
must first find the number d
such that:

e.d mod (p - 1)(q - 1) = 1 or in our case
 11.d mod 480 = 1.

Once again we can quickly find some suitable
candidates for d, for example: d = 131 satisfies this
condition. The problem of finding d is equivalent to
finding the modular inverse of a number.

 Finally, to decode the message R applies a sequence of
mathematical operations on C as follows:

 M = Cd mod n, which for this example becomes
 M = 8131 mod 527 or M = 70.

As you can see, as long as R can keep the original two
primes used to generate the public key a secret he can be
sure that messages addressed to him cannot be decoded
and read or tampered with by anyone else.

Conclusion and Scenes from Part II
Now that we’ve passed all the theoretical hurdles, it’s
time to create our own implementation of the RSA
algorithm. But first we must create a new integer type
capable of holding numbers with 100 digits or more.

“Eratosthe
with an algorit
for finding prim
27 DELPHI INFORMANT MAGAZINE | May 2004
Otherwise we would end up with an encryption system
that could be broken in a matter of days, or even hours.
We’ll leave these and a few other practical details such as
signing and verifying messages for next month.

In this article we saw how encryption algorithms based on
public keys, such as RSA, rely on the fact that it’s really
difficult to break up a large integer into all of its factors.

Although finding if a number
is a composite or a prime is a
relatively quick task, finding the
actual factors for a composite
can take a long time. The
methods presented here can

be easily implemented in Delphi or any other language,
and require only the capability of handling large integers
(something missing in the current RTL version).

In Part II we’ll see how to put into practice all the issues
discussed here, and we’ll see how to create our own
support for large integers and RSA. We’ll conclude this
series by building a nice little demo application that can
be used in your real-life projects.

Further Reading
 The Prime Pages: www.utm.edu/research/primes
 Prime Numbers Generator: http://bille.cudenver.edu/

apps/primes
 The Code Book by Simon Singh (Anchor, 2000)
 Introduction to Algorithms, 2nd Edition by Thomas H.

Cormen (MIT Press, 2001)

nes came up
hm in 280 BC
e numbers.”

www.utm.edu/research/primes
http://bille.cudenver.edu/apps/primes
http://bille.cudenver.edu/apps/primes
mailto:fernando@vicaria.com

ADO.NET § BORLAND DATA PROVIDERS § DELPHI 7, 8

I N F O R M A N T S P O T L I G H T

§ By Glenn Stephens
 Moving to ADO.NET
From TDataSet to System.Data.DataSet with Delphi 8

����������� ���������

���������� ���������

������ �������

�������� ����

��� ���������� ����

������ �������

������ �������

������ �������

������� ���������
���������������������

Figure 2: The connection model for ADO.NET.
For example, you may be wondering how to create calculated
fi elds with ADO.NET, because in Delphi 7 you just did it.
Granted, there are plenty of other tips and techniques you can
use to build powerful database applications with the VCL,
but by the end of this article you’ll be using ADO.NET on the

.NET platform with Del-
phi 8 for .NET to do the
things you’re accustomed
to doing with Delphi 7.

We’ll cover some of the
basics of dealing with
data with ADO.NET, the
Borland Data Providers,
accessing data, creating
master-detail relation-
ships, accessing data
from code, creating cal-
culated fi elds, and vali-
dating data. Let’s start
by looking at how data-
base connections work
in ADO.NET.

When you’ve been working with Delphi

and the VCL for a while — as most

of you undoubtedly have — you’ve

probably picked up a number of tricks and

techniques that make your database applications

faster to build. With the move to .NET, however,

you’re going to need a new bag for the new

tricks you’re going to learn with Delphi 8 for the

Microsoft .NET Framework.

Figure 1: A typical database connection
in Delphi 7.
28 DELPHI INFORMANT MAGAZINE | May 2004
A Connectionless World
If you’re familiar with Delphi’s BDE, dbExpress, ADO, or
IBExpress components, you’ll need a connection component
that connects directly with the data (see Figure 1). The big
difference between this style of connection and the connec-
tion model in ADO.NET is that from the very start, ADO.NET
is designed to not have the database connection component.

For those of you familiar with the MIDAS/DataSnap model,
you’ll fi nd ADO.NET has similar connection styles, but
works with different classes. Looking at Figure 2, you’ll
see that the Connection component connects to the physi-
cal database, the DataAdapter component connects to the
database, and the DataAdapter is responsible for fi lling the
contents of the dataset — as well as applying changes to the
database, based on the modifi ed contents of the dataset.

I n f o r m a n t S p o t l i g h t | Moving to ADO.NET

����������������

���������������
������������

������������

������������

������������

��������������

�������������
����������

����������

����������

����������

��������������

������� ���������
���������������������

�������������
����������

����������

����������

����������

Figure 3: Various data providers for ADO.NET.

Figure 4: Creating the database connection.

Figure 5: Defi ning the provider name and the con-
nection name.
The Main ADO.NET Classes
Figure 2 illustrates the connection model used in ADO.NET.
However, the classes used to access the database will
change depending on the type of database you’re talking
to. For example, the .NET Framework classes ship with
Connection classes for SQL Server and Connection classes
for OLE DB providers (see Figure 3). These classes can be
used to access databases for SQL Server, or databases that
have an OLEDB driver.

The problem with the ADO.NET providers for SQL Server
and for OLEDB is that once you use them in your code,
you’re tied to using them. If your database changes, you
must update your code to support a new database. Bor-
land recognized this as an issue and created the Borland
Data Providers (BDP). The BDP is a fast implementation
of the ADO.NET connection framework used to connect to
a variety of databases. This allows you to do things like
develop against one database and then move the data-
base — with no or few code changes. Currently, the BDP
supports Borland InterBase, IBM DB2, Microsoft Access,
Oracle, and Microsoft SQL Server.
29 DELPHI INFORMANT MAGAZINE | May 2004
By using the BDP you can easily access your data — and
be confi dent that you can simply change databases later
if needed.

Using the Borland Data Providers
Let’s get straight into using the BDP. First we must confi gure
a connection to one of the databases. Looking at the Delphi
8 IDE you’ll see the Data Explorer. Select the BDP you’ll be
using and select Add New Connection (see Figure 4). For our
demonstrations we’ll be accessing the Northwind database that
comes with Microsoft SQL Server and Access.

You’ll then be presented with a screen asking you to enter
the BDP you’ll be using, as well as the name of your new
connection (see Figure 5). Like most database connection
methodologies, the BDP works on the concept of a named
connection.

Once you’ve selected your provider name and your connection
name, you must provide the connection parameters to your
database. You should then right-click on the connection you

I n f o r m a n t S p o t l i g h t | Moving to ADO.NET

Figure 6: Defining the connections parameters.

Figure 8: Configuring a BdpDataAdapter component.
made in the Data
Explorer, and select
Modify Connection to
be able to edit the
parameters for the
connection (see
Figure 6).

You’ll find that
setting the dialog
box where you set
the parameters is
very similar to the
VCL for defining
the parameters for
a dbExpress con-
nection. Make sure
that the param-
eters you’re using
to connect to the
database are cor-
rect by selecting the Test button. Click OK when your connec-
tion is defined and tested.

IDE Handy Hints for the BDP
There are many great features in the Delphi 8 IDE when
it comes to working with the BDP. The first is that once
your connection is defined, you can drill down to see the
tables, views, and stored procedures for your database
connection. By double-clicking on a table or view from

Figure 7: The Borland Data Provider components.
30 DELPHI INFORMANT MAGAZINE | May 2004
this list, you can retrieve the data from this connection
and have it displayed directly in the IDE — which saves
you from using the SQL Explorer (in Delphi 7) and having
to constantly switch back and forth to deal with data.

If you’re using the tree view in the Data Explorer, you can
expand tables and views to see what columns the table or view
will return. Likewise for stored procedures, expanding the tree
view entries allows you to see the parameters for the columns.

The last (and probably most useful) IDE hint for Delphi 8 is
being able to select a table or view from the Data Explorer and
drag it directly to your form. After you’ve done that, you’ll see
that a BdpConnection and BdpDataAdapter component have
been added to the designer, and that all the correct properties
have been defined for these BDP components.

Using the BDP Components
in Your Application
Using the BDP components is nice and easy. For a simple
SELECT statement you need to define a connection to
your database by using the BdpConnection component.
You’ll then need a BdpDataProvider component. The
BdpDataProvider component knows how to retrieve data
from the BdpConnection component and populate a
System.Data.DataSet object. The BdpDataProvider com-
ponent also knows how to update data in your database
based on changes made to a System.Data.DataSet object.

Looking at the Tool Palette you should see a category titled
Borland Data Provider, wherein you’ll find all the components
you need to connect your database to your application
(see Figure 7). Drop a BdpConnection component and
a BdpDataAdapter component onto the designer. Set
the ConnectionString property on your BdpConnection
component to the name of the connection you just defined.

The next thing you’ll need to set up is the Data Adapter compo-
nent. Right-click on the BdpDataAdapter component and select the
Configure Data Adapter option; you’ll be presented with the screen
shown in Figure 8. Select a table and the column(s) you want

Figure 10: Configuring the BdpDataAdapter’s DataSet.

I n f o r m a n t S p o t l i g h t | Moving to ADO.NET

Figure 9: Previewing the data for a BdpDataAdapter.

Figure 11: A basic database application.
to include in your query. Then click the Generate SQL button.
This will create the SELECT statement used to retrieve the data,
as well as the UPDATE, INSERT, and DELETE SQL statements
31 DELPHI INFORMANT MAGAZINE | May 2004
to update the database for a row value that has changed. If you
have the Optimize checkbox selected when you click the Generate

SQL button, the UPDATE, INSERT, and DELETE statements will
only include the Primary Key columns in the WHERE clause for
the table selected (instead of using every column).

Of course, you’re free to enter your own SQL into the text boxes
using the Select, Update, Insert, and Delete tabs. Once you have
your SQL defined for the query, select the Preview Data tab to
view the data (see Figure 9). This screen is handy in ensuring
that the data you’re retrieving from the database is correct.

The last tab on the BdpDataAdapter configuration dialog box
is used to select the System.Data.DataSet that will be popu-
lated with the data from the DataAdapter (see Figure 10). You
have the option of creating a new DataSet component that
will be placed on the form, which is the option I’ve selected.
If you had placed a DataSet component onto the designer, you
could’ve selected the Existing DataSet option. Selecting an existing
DataSet is especially useful when you want to mix the results
from multiple BdpDataAdapters into one dataset for creating
master-detail relationships. The other option you can select is
to not populate any dataset. This last option is useful if you’ll
be creating and populating DataSets dynamically in code.

For our example we’ll select to dynamically create a
DataSet. Enter the name of the Dataset component and
select the OK button (again, see Figure 10).

Select the BdpDataAdapter component again and set the Active
property to True. This is useful, as later it will allow you to see
the data at design time. For our example we’ll need a control
to bind our data to. For this we’ll use the DataGrid compo-
nent. Place one of these components on the form, then set the
DataGrid’s DataSource property to the DataSet that was just
created. Set the DataGrid’s DataMember property to the name
of the DataTable we’ll be using. This normally will be set to the
name of the database table — in this case, Products. You should
then have a simple form similar to that shown in Figure 11.

This shows a very simple application to display and update
data. But the DataSet is only an in-
memory representation of the data
in your database. To update the data
you need to tell the BdpDataAdapter
to update the database based on the
changes made in the DataSet. I added
a button to the form that can be used
to apply the changes to the database.
Figure 12 shows the single line of
code needed to update the database.

Delphi developers will probably find
that this way of updating data is very
similar to using the MIDAS/DataSnap
TClientDataSet technology. In our
example we are, in essence, using a

two-tiered approach to updating the
database. You could easily set up a

three-tier system using .NET technologies such as Web
services or remoting. Because the System.Data.DataSet
object can be serialized, it’s very easy to retrieve it from

I n f o r m a n t S p o t l i g h t | Moving to ADO.NET

procedure TWinForm.btnUpdateProducts_Click(
 Sender: System.Object; e: System.EventArgs);
begin
 daProducts.Update(dsProducts, 'Products');
end;

Figure 12: Updating changes to a System.Data.DataSet.

Figure 13: The layout of the System.Data.DataSet object.

������������
����������

��������������� ����������

���������� ����������

���������� ����������

���������

�������������������

Figure 14: Defi ning a master-detail relationship on a DataSet.
a Web service or to ask a Web service to update the
database based on changes to a System.Data.DataSet.

A Look at DataSets
With ADO.NET you’ll be working with the
System.Data.DataSet object a lot. Therefore, it’s worthwhile
to look at the structure of the DataSet object. Figure 13 dem-
onstrates the building blocks of the DataSet object.

Unlike the RTL TDataSet class, the System.Data.DataSet
class contains more information than just a collection
of records. In ADO.NET, the DataSet can contain one or
32 DELPHI INFORMANT MAGAZINE | May 2004
more DataTables. A DataTable is a collection of rows from
a query. As well as the DataTables, the DataSet class can
contain the relationships between these DataTables. In
our example we populated a DataSet with the results from
a single query, but could just have easily populated a sin-
gle dataset with details from multiple BdpDataProviders.
Master-detail in an
ADO.NET World
Because the DataSet maintains a list
of relationships, defi ning a master-
detail relationship is quite easy. From
the Northwind database, add two
BdpDataAdapter components to the
designer. One BdpDataAdapter will
be for the Categories table, and the
other will be for the Products table.
Make sure that these populate the
same dataset by selecting the Existing

DataSet option in the BdpDataAdapter
confi guration dialog box (again, see
Figure 10). When that’s done, make
sure you set both the BdpDataAdapter’s
Active properties to True.
Select the DataSet component that you populated and select
the Relations property. Click on the ellipsis to bring up the
Relations Collection Editor. Click the Add button to defi ne a
new relationship, then defi ne the relationship between the
Categories and Products tables (see Figure 14).

Once the relationship has been defi ned, you can drop
two DataGrids onto your form. For the fi rst DataGrid set
the DataSource to the Categories table. For the second
DataGrid, again set the DataSource property to the Cat-
egories table. For the DataMember property on the second
DataGrid, select the name of the relationship you defi ned.
By doing this you should have successfully set up a mas-
ter-detail relationship between the Categories and Prod-
ucts tables (see Figure 15).

Accessing Data from Code
Because the DataSet is a complex piece of work, you’ll
need to know how to access data in code. This is where
there are many differences from the VCL TDataSet. The
two main differences are a result of the DataSet contain-
ing a collection of DataTables, and that the DataSet is
contained within memory.

Because the DataSet is entirely contained in memory,
there are no EOF/BOF methods to navigate throughout a
DataTable. Because it’s all in-memory, there is a collection
of DataRow objects that represent the data. Instead of
navigating through records the old VCL way (see
Figure 16), you iterate through a collection of rows in a
DataTable (see Figure 17).

Converting each column that you return to a correct data
type can become a little tiresome. Later on we’ll look at typed
DataSets in order to expedite the writing of data access code.
But before we do that, let’s look at the ADO.NET way to do a
TDataSet classic: creating calculated fi elds.

Figure 15: A master-detail example.

procedure TWinForm.btnGetValueOfStock_Click(
 Sender: System.Object; e: System.EventArgs);
var
 counter: Integer;
 TotalValueOfStock: Decimal;
begin
 TotalValueOfStock := 0;
 for counter := 0 to dsProducts.Tables[
 'Products'].Rows.Count - 1 do begin
 TotalValueOfStock := TotalValueOfStock +
 Convert.ToDecimal(dsProducts.Tables['Products'].Rows[
 counter]['UnitPrice’]) * Convert.ToInt32(dsProducts.
 Tables['Products’].Rows[counter]['UnitsInStock']);
 end;
 MessageBox.Show('Total value of the current stock is ' +
 TotalValueOfStock.ToString('C'));
end;

Figure 17: Iterating through DataRow objects in a DataTable.

MyDataSet.First;
while not MyDataSet.Eof do begin
 // Do some operation.
 MyDataSet.Next;
end;

Figure 16: The VCL way of navigating a TDataSet.

// Create the calculated column to evaluate
// the Total including Discount.
string TotalExpression =
 "UnitPrice * Quantity * (1 - Discount)";
dsOrderItems.Tables[0].Columns.Add(
 "Total", TypeOf(Double), TotalExpression);

Figure 18: Adding a new DataColumn using an expression.

procedure TWinForm.SetShouldReorderForRow(Row: DataRow);
var
 ShouldReorder: Boolean;
begin
 if Convert.ToInt32(Row['UnitsInStock']) >
 Convert.ToInt32(Row['ReorderLevel']) then
 ShouldReorder := False
 else
 ShouldReorder :=
 Convert.ToInt32(Row['UnitsOnOrder']) = 0;
 Row['Should Reorder'] := System.Object(ShouldReorder);
end;

procedure TWinForm.ProductsDataColumnChanged(
 Sender: System.Object; e: DataColumnChangeEventArgs);
begin
 if (e.Column.ColumnName = 'UnitsInStock') or
 (e.Column.ColumnName = 'UnitsOnOrder') or
 (e.Column.ColumnName = 'ReorderLevel') then
 SetShouldReorderForRow(e.Row);
end;

procedure TWinForm.btnCreateCalculatedColumn_Click(
 Sender: System.Object; e: System.EventArgs);
var
 ShouldReorder: DataColumn;
 counter: Integer;
begin
 // Create the Column.
 ShouldReorder := dsProducts.Tables['Products'].Columns.
 Add('Should Reorder', TypeOf(System.Boolean));
 // Pre-calculate the values that it should be set to.
 for counter := 0 to
 dsProducts.Tables['Products'].Rows.Count - 1 do
 SetShouldReorderForRow(
 dsProducts.Tables['Products'].Rows[counter]);
 // Make sure it gets notified when any interested
 // columns change.
 Include(dsProducts.Tables['Products'].ColumnChanged,
 ProductsDataColumnChanged);
 btnCreateCalculatedColumn.Enabled := False;
end;

Figure 19: Creating a calculated column that isn’t based on a simple expression.

I n f o r m a n t S p o t l i g h t | Moving to ADO.NET
Calculated Fields
One of the most common things you’re likely to do in a data-
base is to create calculated fields. These aren’t actual fields;
instead, their value is determined as a result of a calculation
on the value of another field or fields. When using a TDataSet,
you normally invoke the Fields editor and then create a calcu-
lated field.

In ADO.NET there are two ways you can create calculated
fields. The first way is to create a new DataColumn that
uses an expression to obtain the value for the calculation
(see Figure 18). The method shown, however, is fairly lim-
ited. There are only a limited amount of functions that you
can apply to obtain the desired result. The reason for using
an expression for calculated fields is because the calculated
field can distribute between computers when the DataSet is
serialized. By using an expression, the information can still
be passed around.
33 DELPHI INFORMANT MAGAZINE | May 2004
A better way to simulate calculated fields would be to define a
new column in a DataTable, and be notified when the certain
columns change. Unlike with TDataSet — where you set up
the calculated field, which is calculated when needed — with
ADO.NET you need to pre-calculate the values for the calcu-
lated fields. You also need a method of being notified when the
values change in the columns you need to calculate the values
for your calculated field. For this we use the ColumnChanged
event on the DataTable. Figure 19 demonstrates using this
method of creating a calculated field.

Typed DataSets
Notice in the code in Figure 19 where we access the value for
a column that I’m using the Convert functions to obtain the
value of the column. This can become quite cumbersome in
your code, because you must type the name of the field all
the time. My favorite thing about the TDataSet class in the

I n f o r m a n t S p o t l i g h t | Moving to ADO.NET

Figure 20: Creating a typed DataSet.

procedure TWinForm.btnGetValueOfStock_Click(
 Sender: System.Object; e: System.EventArgs);
var
 counter: Integer;
 TotalValueOfStock: Decimal;
begin
 TotalValueOfStock := 0;
 for counter := 0 to
 dsProducts1.Products.Rows.Count - 1 do begin
 TotalValueOfStock := TotalValueOfStock +
 dsProducts1.Products.Item[counter].UnitPrice *
 dsProducts1.Products.Item[counter].UnitsInStock;
 end;
 MessageBox.Show('Total value of the current stock is ' +
 TotalValueOfStock.ToString('C'));
end;

Figure 21: Accessing data using a typed DataSet.
VCL is that I can create a persistent field, and then simply use
code completion to get the right column without any of my
many spelling mistakes. And the persistent field will be of the
correct data type every time.

Luckily, typed DataSets aren’t that different from using
persistent fields with the TDataSet. In the VCL, persistent
fields are created as wrappers around the field. The same
happens with ADO.NET typed datasets, but what actually
happens is a System.Data.DataSet subclass is created spe-
cifically for access to your particular dataset.

Creating the Typed DataSet
The first thing you must do to create a typed DataSet is to
create your data adapters on your form. For our example you
could simply drag a table from the Data Explorer onto the
Form Designer. This should create a BdpDataAdapter and a
BdpConnection, if needed. Right-click on the BdpDataAdapter
and configure it appropriately. Once configured, right-click
on the BdpDataAdapter and select Generate Typed DataSet. You’ll
then be presented with the Generate DataSet dialog box,
where you can select which tables are to be included in the
typed DataSet (see Figure 20). If you have more than one
BdpDataProvider on the form, you can also include those in
the typed DataSet definition.

In our example, we’ll use the Products DataSet to define
our typed dataset. Clicking OK creates an XML Schema
Definition (XSD) file that contains the definition of the
structure for your new typed DataSet. In addition, a Pas-
cal unit is created that holds the information about the
typed dataset. If you select the Project Manager in the
Delphi IDE, you can double-click on the source code file
located under the XSD file to view the source code unit.
You’ll see that there is a DataSet descendant, a DataRow
34 DELPHI INFORMANT MAGAZINE | May 2004
descendant specifically for the data, and many helper
functions. You should also note that your typed DataSet is
added to the designer.

Putting the typed DataSet to use, we can navigate the
records for all the records of products, as we did in
Figure 16. Using the typed DataSet we created for the
products, the code is much cleaner, and you get to use
the code completion features of Delphi, enabling you to
write this code in less time (see Figure 21).

Notice that we don’t access the DataTables collection in
Figure 21, but instead access the Products property. We
can also use the UnitPrice and the UnitsInStock properties
of the ProductsDataRow to expedite development.

We can do less coding by creating a DataRow descendant
(see Figure 22). You’ll notice that the DataRow descendant
also creates methods to set each field to null, and to deter-
mine if a field has a null value.

Binding Data to Other Controls
You can bind data to almost any control property that you
desire. In fact, you don’t even need to bind to a DataSet at
all; you can bind directly to anything that implements the
IListSource interface. Even an array can be used for data
binding, as shown in Figure 23.

In most cases, when you bind a data-aware component to
a DataSource in VCL land, you’ll set the DataSource and
DataField properties and then have the data for a field
created for you. For example, if you wanted a data-aware
label that displayed a Product Code in the Caption and the
Full Description in the Hint property, you’d have to create
a custom TLabel subclass that allowed you to do that.

Not only can you bind to arrays and other data types in
ADO.NET, you’re not limited to binding to just a DataSource,
DataField, etc. Instead, you can bind to most properties of
components. You’ve seen how to hook data up to a DataGrid,
but let’s hook up a Label control, and then have several of its
properties bound to our DataSet.

For this example, drop a ToolTip component so that each
visible component can have a ToolTip property. Then drop

const
 SalutationTypes: array[0..4] of string =
 ('Mr', 'Mrs', 'Miss', 'Ms', 'Dr');

procedure TWinForm.TWinForm_Load(
 Sender: System.Object; e: System.EventArgs);
begin
 cbSalutation.DataSource := SalutationTypes;
end;

Figure 23: Binding Items from an array of strings into a ComboBox.

Figure 24: Binding to more than one property using ADO.NET data binding.

I n f o r m a n t S p o t l i g h t | Moving to ADO.NET

ProductsRow = class(DataRow)
strict private
 tableProducts: ProductsDataTable;
private
 constructor Create(rb: DataRowBuilder);
public
 function get_ProductID: Integer;
 function get_ProductName: string;
 function get_SupplierID: Integer;
 function get_CategoryID: Integer;
 function get_QuantityPerUnit: string;
 function get_UnitPrice: System.Decimal;
 function get_UnitsInStock: SmallInt;
 function get_UnitsOnOrder: SmallInt;
 function get_ReorderLevel: SmallInt;
 function get_Discontinued: Boolean;
 procedure set_ProductID(Value: Integer);
 procedure set_ProductName(Value: string);
 procedure set_SupplierID(Value: Integer);
 procedure set_CategoryID(Value: Integer);
 procedure set_QuantityPerUnit(Value: string);
 procedure set_UnitPrice(Value: System.Decimal);
 procedure set_UnitsInStock(Value: SmallInt);
 procedure set_UnitsOnOrder(Value: SmallInt);
 procedure set_ReorderLevel(Value: SmallInt);
 procedure set_Discontinued(Value: Boolean);
 property ProductID: Integer
 read get_ProductID write set_ProductID;
 property ProductName: string
 read get_ProductName write set_ProductName;
 property SupplierID: Integer
 read get_SupplierID write set_SupplierID;
 property CategoryID: Integer
 read get_CategoryID write set_CategoryID;
 property QuantityPerUnit: string
 read get_QuantityPerUnit write set_QuantityPerUnit;
 property UnitPrice: System.Decimal
 read get_UnitPrice write set_UnitPrice;
 property UnitsInStock: SmallInt
 read get_UnitsInStock write set_UnitsInStock;
 property UnitsOnOrder: SmallInt
 read get_UnitsOnOrder write set_UnitsOnOrder;
 property ReorderLevel: SmallInt
 read get_ReorderLevel write set_ReorderLevel;
 property Discontinued: Boolean
 read get_Discontinued write set_Discontinued;
 function IsSupplierIDNull: Boolean;
 procedure SetSupplierIDNull;
 function IsCategoryIDNull: Boolean;
 procedure SetCategoryIDNull;
 function IsQuantityPerUnitNull: Boolean;
 procedure SetQuantityPerUnitNull;
 function IsUnitPriceNull: Boolean;
 procedure SetUnitPriceNull;
 function IsUnitsInStockNull: Boolean;
 procedure SetUnitsInStockNull;
 function IsUnitsOnOrderNull: Boolean;
 procedure SetUnitsOnOrderNull;
 function IsReorderLevelNull: Boolean;
 procedure SetReorderLevelNull;
end;

Figure 22: The ProductsDataRow class.
a Label component onto the form. This Label component
will be used to display the current product. It will display
the ProductID in the caption and the ProductName in the
ToolTip. Select the Label component and select its
DataBindings property. Expand this property so the
Advanced property is visible. Then select the ellipsis to
bring up the Advanced Data Binding editor. For each
property in the list, you can select which properties will
be bound to which columns (see Figure 24).
35 DELPHI INFORMANT MAGAZINE | May 2004
You can do this type of data binding in ADO.NET, from binding
the Text of a Label to binding the Icon of a form. Data binding
is one of the best features of ADO.NET, and I’m sure you’ll find
it extremely handy for years to come.

Data Validation
In VCL development, exception handling is used to con-
trol whether information in the current record or field is
valid. You would write an OnBeforePost event handler on
a TDataSet or an OnValidate event handler for a field.
This isn’t very different from how validation works with
ADO.NET. Whereas with the VCL you write the event
handlers on the TDataSet, with ADO.NET you write the
event handlers for your DataTables.

Dealing with Column Changes
Usually when I have to deal with validating the values of
a particular column using the VCL, I do one of two things:
I’ll set properties on the TField descendants so that I make
sure the values are correct, and/or I write an OnValidate
event handler for the specific TField.

Setting the properties on a data column is relatively
straightforward. You’ll use the appropriate column proper-
ties to set the values (see Figure 25).

In the VCL, you would write an OnValidate event handler
for your persistent field, and raise an exception when the
value wasn’t acceptable. The concept is the same with
ADO.NET. Each DataTable has an OnColumnChanging
event that you use to be notified when changes in any

I n f o r m a n t S p o t l i g h t | Moving to ADO.NET

procedure frmProducts.CheckTheProductsDataRow(
 Sender: System.Object;
 e: System.Data.DataRowChangeEventArgs);
begin
 if Decimal(e.Row['UnitPrice']) < 0.00 then
 raise Exception.Create(
 'The unit price for a product cannot be negative');
 if e.Row.IsNull('SupplierID') then
 raise Exception.Create(
 'The supplier for the product must be provided');
end;

procedure frmProducts.TWinForm_Load(Sender: System.Object;
 e: System.EventArgs);
var
 products: ProductsDataSet;
begin
 products := ProductsDataSet.Create;
 ...
 Include(products.Products.RowChanging,
 CheckTheProductsDataRow);
end;

Figure 27: Validating a DataRow in a DataTable.

procedure ProductsDataSet.ProductsDataTable.OnRowChanging(
 e: DataRowChangeEventArgs);
var
 row: ProductsDataSet.ProductsRow;
begin
 inherited OnRowChanging(e);
 row := e.Row as ProductsDataSet.ProductsRow;
 if row.UnitPrice < 0.00 then
 raise Exception.Create(
 'The unit price for a product cannot be negative');
 if row.IsSupplierIDNull then
 raise Exception.Create(
 'The supplier for the product must be provided');
 if (Assigned(Self.ProductsRowChanging)) then
 Self.ProductsRowChanging(Self,
 ProductsRowChangeEvent.Create((ProductsRow(e.Row)),
 e.Action));
end;

Figure 28: Validating data using typed DataSets.

procedure frmProducts.CheckTheColumns(
 Sender: System.Object;
 e: System.Data.DataColumnChangeEventArgs);
begin
 if e.Column.ColumnName = 'ProductID' then begin
 if Integer(e.ProposedValue) < 0 then begin
 MessageBox.Show(
 'The Product ID needs to be a positive number',
 'Data Entry Issue', MessageBoxButtons.OK,
 MessageBoxIcon.Warning);
 raise Exception.Create(
 'The Product ID must be a positive number');
 end;
 end;
end;

// Dynamically creating a Typed DataSet.
procedure frmProducts.TWinForm_Load(Sender: System.Object;
 e: System.EventArgs);
var
 products: ProductsDataSet;
begin
 products := ProductsDataSet.Create;
 daProducts.Fill(products, 'Products');
 DataGrid1.DataSource := products;
 DataGrid1.DataMember := 'Products';
 Include(products.Products.ColumnChanging, CheckTheColumns);
end;

Figure 26: Using field-level validation on a DataTable.

Figure 25: Validation properties that can be set on a DataColumn.

DataColumn
Property

VCL
Equivalent

Description

AllowDBNull Required Determines if null values are allowed
in the column

MaxLength MaxLength The maximum length of the column

Unique none Determines if column must contain a
unique value

ReadOnly ReadOnly Determines if the column is read only
columns occur. Here you check the value of the column
in which you’re interested, and raise an exception if the
value is unacceptable. It’s also a good idea to display a
dialog box explaining why the value is incorrect so users
don’t get upset when it appears that the application has
changed the values for no apparent reason.

You’ll need to write code to set up the OnColumnChanging
event. As an example, Figure 26 demonstrates using the
events to check that the ProductID is a positive number.

Dealing with Row Changes
Managing changes in rows isn’t that different than dealing
with changes with columns. The same rules apply. You
set up the event handler for the change. You check the
change, and if you’re not happy with the values provided,
raise an exception. This way you can always be sure that
the data is valid.

Where you would use the VCL’s OnBeforePost event to check
for changes, with ADO.NET you would use the RowChanging
event on the DataTable. You set up the RowChanging event in
much the same way you set up the ColumnChanging event.
36 DELPHI INFORMANT MAGAZINE | May 2004
The major difference with the RowChanging event is that you
don’t need to display an error dialog box. Figure 27 demon-
strates setting up the validation routines for a DataRow.

If you’re using typed DataSets, validating rows is even easier.
When the typed dataset is created, it exposes a method named
OnRowChanging for each DataTable contained in the dataset.
You can modify this method to write the validation logic for
your DataRow. Not only is it easier to set up, there is also
no need to typecast the column values to get the values for
a column. Figure 28 demonstrates how to perform validation
against the Products DataTable.

Validation isn’t much of an issue when dealing with ADO.NET.
Using exception handling, you implement your validation logic
in a way that is simple to use, and which isn’t too different
from how you did the same thing using the VCL.

Conclusion
For those of you moving to ADO.NET from the VCL, you
are moving to a new framework, but most of the same
rules apply. You still need to manipulate data and use
your bag of tricks to get your applications out the door

I n f o r m a n t S p o t l i g h t | Moving to ADO.NET

-

and to your customers in the shortest amount of time.
By using the techniques discussed in this article, you’ll
be able to convert your VCL TDataSet skills to ADO.NET
skills in no time.

The five sample projects that accompany this article are avail
able for download on the Delphi Informant Magazine Com-
plete Works CD located in INFORM\2004\MAY\DI200405GS.
37 DELPHI INFORMANT MAGAZINE | May 2004

Glenn Stephens designs and develops applications for various platforms,
and has been programming for more than 15 years. He is a Borland Certified
Consultant, a Microsoft Certified Solution Developer, and is the author of The
Tomes of Kylix: The Linux API. Living in sunny Australia, Glenn spends his
spare time training for marathon swimming races and playing the piano too loud
for his neighbors. Feel free to contact Glenn at glenn@glennstephens.com.au.

mailto:glenn@glennstephens.com.au

N E W & U S E D
By Mike Riley

Doc-To-Help 7.0 Professional
Help Never Looked So Good
 Like most mature products, ComponentOne’s

latest release of its Help documentation

construction tool has built its latest

features on a bedrock of past success. When

ComponentOne acquired the Doc-To-Help

product line in 2001, users expected notable

improvements in successive releases — and

ComponentOne has delivered (see Figure 1).
38 DELPHI INFORMANT MAGAZINE | May 2004

Figure 1: The main Doc-To-Help screen provides access to the most granular details
New & Improved
This review will focus on the enhancements made to Doc-To-
Help 7.0 Professional. In addition to the obligatory bug fixes for
previous versions, five new features have been added:
 Natural Language Search
 Graphic Hot Spots
 A Modular TOC Utility
 Support for Microsoft Help 2.0 Context Strings (this may be

a less interesting addition for developers because Microsoft
has officially discontinued this system)

 A Theme Designer for creating and applying a customized
look-and-feel for HTML Help, HTML 4.0, and Help 2.0 targets
of a Help project.
The Natural Language Search
feature affords users of WinHelp
and compiled HTML Help files the
ability to generate an index file used
to retrieve Help topics via a standard
question, à la the Microsoft Office
Assistant’s “What would you like to
do?” natural query feature. Although
the construction of this functionality
into a Help project isn’t as easy
as the rest of the program, it does
add considerable polish to a Help
facility — especially if the intended
consumer of the documentation
prefers a more fluid search approach.

Another new feature that has finally
made its way into the product
is Graphic Hot Spots. This long-
awaited enhancement allows Help
authors to add hot-spot topic links
into an embedded image via the
ComponentOne Image Map Editor tool.

N e w & U s e d | Doc-To-Help 7.0 Professional

Figure 2: The Theme Designer provides the ability to customize an HTML Help file’s behavior
and visual appearance.
The scenario most applicable for this feature is a toolbar
screenshot that users can point-and-click to link directly to
the corresponding topic. This feature is used extensively in
Doc-To-Help’s own compiled HTML Help file.

The Modular TOC Utility, an easy-to-use wizard
application, adds a table of contents to each Help module
in a project, allowing programmers access to a full
content list for context-sensitive Help requests. Without
this addition, Help files tend to become “islands,”
because they don’t contain a master TOC to reference
back to the primary Help contents file.

Just the Facts
Doc-To-Help 7.0 Professional provides developers and
document specialists with a powerful online and printed
user documentation construction toolkit that can adequately
serve most application platform needs. It can compile and
output five Help document types from a single source,
its customized themes allow Help files to maintain a
company’s brand or approved corporate design guidelines,
and it provides an extensive API for automated Help file
construction needs. Its minor shortcomings include its lack
of any codified examples demonstrating how the product’s
resulting Help files can be accessed and used within various
languages, including Delphi, and the documentation is only
installed as a compiled HTML Help file.

ComponentOne LLC
4516 Henry Street, Suite 500
Pittsburgh, PA 15213

Phone: (800) 858-2739
E-Mail: info@componentone.com
Web Site: www.componentone.com
Price: US$999.95
39 DELPHI INFORMANT MAGAZINE | May 2004
In addition to the three pre-designed
themes included in Doc-To-Help, the
Theme Designer is the one feature I
was especially pleased to see as part of
the product (see Figure 2). Although
this feature will probably only be
leveraged by a small percentage of
Doc-To-Help users, its inclusion will
make them happy campers. Navigation,
background styles, and images in any
window (primary, secondary, or pop-
up) can provide a unique look to any
Help project. Games and applications
with highly stylized UIs are frequent
employers of this level of customization.
Although the design stage does take
some planning (especially because poor
background color selections can make
the best documentation in the world
illegible), setting the various theme
properties is as simple as a few mouse
clicks. More colorful Help files are sure
to be a result of this feature.
If It’s Not Broken ...
Although not new to the 7.0 release, I found the most
impressive feature of this product is still its powerful
ability to compile well-formed Help documentation into
five document platforms from a single source. Build
targets are preconfigured for HTML (.htm), HTML Help
(.chm), JavaHelp (.jar; this requires the JRE 1.4.1_02 and
JavaHelp 1.1.3 to be installed), Printed Manual (.doc),
and legacy WinHelp (.hlp) formats.

I was amazed by how well each format was optimized
for its intended platform. In fact, Doc-To-Help performs
this task so well that I wished it would support other
document output types, such as press-ready PDFs,
and even PowerPoint formats. Unfortunately, the
current version doesn’t provide a straightforward add-
in API function for inserting new build types, thereby
preventing power developers from extending the
product’s capabilities to support alternate output files.
Nevertheless, the API that is exposed for scripting is still
quite powerful, allowing the behavioral modification of
Help documents using nearly every formatting property
available through the manual Doc-To-Help interface.

Another ding against the product is that no example
integration code ships with the installation, leaving it
up to the developer to chase down the respective Help
file instantiation code for their respective programming
environment. Activating online Help in a Delphi program
is remarkably easy, but it would have nevertheless been a
good refresher to have a few samples demonstrating how
this can be done in the various application frameworks
that Doc-To-Help supports. At least two tutorials and two
sample projects that ship with the product do an adequate
job of introducing the program’s functionality to its users.

Like previous versions, and similar to several other Help
documentation tools, Doc-To-Help 7.0 Professional requires

www.componentone.com
mailto:info@componentone.com

Mike Riley is a chief scientist with RR Donnelley, one of North America’s
largest printers. He participates in the company’s emerging technology
strategies using a wide variety of distributed network technologies,
including Delphi. Readers may reach him at mike_riley_@hotmail.com.

Figure 3: The Doc-To-Help formatting toolbar appears as a Microsoft Word add-in when
editing Help documents.

N e w & U s e d | Doc-To-Help 7.0 Professional
Microsoft Word to be installed to use the product, as
Word is employed as the primary document construction
interface (see Figure 3). This normally isn’t an issue for
most technical writers; nevertheless, it adds a modestly
expensive requirement to the operational use of Doc-To-
Help. Developers who prefer their tools to be self-contained
and don’t require the multiple outputs that Doc-To-Help
provides may find less expensive alternatives more aligned
with their expectations. Doc-To-Help 7.0 Professional
also requires the Microsoft .NET Framework 1.1. During
installation, the Doc-To-Help setup will automatically check
your system for the presence of this framework.

As one would expect from a Help construction tool, the online
Help is excellent. It also serves as a perfect demonstration of
the power of Doc-To-Help, because ComponentOne obviously
“ate its own dog food” to create the program’s Help files.
Unfortunately, the download version doesn’t provide a
Microsoft Word or PDF version of the documentation, making
users rely solely on the compiled HTML Help file for the
program’s documentation needs. This is particularly odd since
40 DELPHI INFORMANT MAGAZINE | May 2004
Doc-To-Help provides painless output to
most of these formats anyway. It would
have been ideal for ComponentOne to
include the precompiled Help project
files for users to prune best practices
from a company that obviously knows
the capabilities of its tool inside and out.
Conclusion
Overall, the product is a decent addition for any application
developer responsible for baking documentation into their
projects. And given the variety of project types these days,
whether Delphi-, Java-, or .NET-based, Doc-To-Help’s
output support ensures that an investment in this Help
authoring tool offers enough versatility to fulfill nearly
every Help documentation need.

Doc-To-Help 7.0 Professional provides developers and
document specialists with a powerful online and printed
user documentation construction toolkit that can adequately
serve most application platform needs. Although the product
does have some minor shortcomings, its flexibility, power,
and ease of use make it a worthy contender in the electronic
documentation space.

mailto:mike_riley_@hotmail.com

T E X T F I L E

Delphi Developer’s Guide to XML,
Second Edition
Delphi Developer’s Guide
to XML, Second Edition

by Keith Wood, BookSurge,
www.booksurge.com.

ISBN: 1-59109-862-9
Cover Price: US$49.99

(589 pages)
Many developers are writing
Web applications to lever-

age XML, whether in multifunctional
presentation layers, or machine-to-
machine communication via SOAP,
REST, or a more exotic contextually-
based schema. Delphi developers faced
with understanding XML will find
Keith Wood’s new book an educational
addition to their library. Wood is a fre-
quent contributor to Delphi Informant,
having written a three-part series on
“XML Building Blocks” as well as
many other Delphi XML-related topics.
In this book, he successfully combines
his deep knowledge of Delphi with
his clear writing style, using the same
well-paced teaching approach found in
his magazine articles.

The first edition of this book, pub-
lished by Wordware and currently
out of print, was reviewed more than
two years ago by Ron Loewy (see his
review in the February, 2002 issue
of Delphi Informant or online at
www.DelphiZine.com). Loewy con-
cluded his review thus, “If you need
to understand XML from a developer’s
point of view, this is the only Delphi-
specific book. I can also recommend it
without reservation. The book provides
concise information, and covers parsing
and producing XML from Delphi appli-
cations.” I generally agree with Ron’s
review of the first edition, so this review
will focus on evaluating the changes
made in the second edition.

When the first edition was written, the
family of XML technologies was rapidly
41 DELPHI INFORMANT MAGAZINE | May 2004
evolving and changing — some followed
the Darwinian trajectory of survival of
the fittest. This edition resolves XML’s
early growth spurts and places the latest
catalog of successful XML derivatives
into meaningful context for Delphi devel-
opers to comprehend and leverage in
their Delphi projects.

The most notable additions to the
second edition are the discussions of
XML Data Binding, XML Mapper, and
SOAP support that have been added
to Delphi 6 and higher releases.
The book also promotes the Simple
API for XML (SAX) for Pascal, a
remarkable open source XML library
available at http://sourceforge.net/
projects/saxforpascal/. Unfortunately,
the book was completed before Tur-
boPower donated its excellent fam-
ily of products to the open source
community. As such, Wood missed
an opportunity to promote further
enhancements of the XML Partner
components available for download
at http://sourceforge.net/projects/
tpxmlpartner/. Of all the Delphi XML
components I’ve had the opportunity
to leverage in my Delphi applications,
XML Partner has been the main com-
ponent library of choice. Given that
this is now an XML suite freely avail-
able to Delphi developers, an appen-
dix on using the components would
have been ideal.

The price of this second edition has been
reduced by US$10 from the first edition,
although the relevance of the content has
increased — a bargain indeed. Missing
this time around is an accompanying
CD-ROM; however, the code samples can
be downloaded from the book’s Web site
at http://home.iprimus.com.au/kbwood/
DelphiXML.

And for those who don’t mind e-reading,
BookSurge offers a non-printable digital
version of the book for the remarkably
low price of US$7.99. This version may
be optimal for those who purchased the
first edition and are seeking an inexpen-
sive upgrade to absorb the changes in
this new edition.

— Mike Riley

www.DelphiZine.com
http://sourceforge.net/projects/saxforpascal/
http://sourceforge.net/projects/saxforpascal/
http://sourceforge.net/projects/tpxmlpartner/
http://sourceforge.net/projects/tpxmlpartner/
http://home.iprimus.com.au/kbwood/DelphiXML
http://home.iprimus.com.au/kbwood/DelphiXML
www.booksurge.com

F I L E | N E W
 Last month I shared my initial reactions to Delphi 8.
 This month I’d like to deal with an issue that seems

to come up every time a new version of Delphi is released:
The future of Borland and our favorite development tool.

I was inspired to write this column after reading a dis-
cussion thread on Delphi-Talk (www.elists.org/mailman/
listinfo/delphi-talk) entitled “Borland’s Future” (which was
inspired by a previous discussion on the borland.public.
delphi.non-technical newsgroup at Newsgroups.Borland.com).
The Delphi-Talk thread began with this post: “Has anyone
been following the newsgroups? What are we all to think
when Blake Stone, Chuck J., and Eddie Churchill all jump on
the Microsoft ship? Are Delphi’s days coming to an end? Any-
one care to comment?”

As with the Borland newsgroup, many Delphi-Talkers
spoke up. The first response was almost predictable, rais-
ing the question: “Wasn’t this said when Anders left four
or five years ago?” The next contributor struck me as par-
ticularly thoughtful; he began with the observation that,
“The Delphi jobs list gets shorter every month. There are
a whole lot more people looking for jobs than jobs look-
ing for people.” But he continued with, “Borland has the
best technical solution of any available.” He concluded
by pointing out that although every market has a leader,
in this case Microsoft with its Visual Studio .NET, there is
room for other players such as Borland — especially con-
sidering their recognized quality.

The next contributor took the discussion in an entirely new
direction with a suggestion that surprised even me: “I think
part of the problem is the lack of a visible and flamboyant
CEO a la Philippe Kahn.” Assessing Borland’s current leader,
he said that Dale Fuller seemed like a “great guy,” but sug-
gested that the CEO needed to “get out there and make a
bit of a fool of himself like Kahn did, like Ellison, McNealy,
and Ballmer do.” I have to disagree with this a bit. I didn’t
attend the last Borland Conference, but at earlier confer-
ences I found Dale to be extremely visible and accessible.
And to his credit, I think he was more than willing to make
something of a fool of himself, especially in the opening
show. That said, perhaps he could be more newsworthy
beyond the walls of the Land of Bor.

The Future of Delphi
§ By Alan C. Moore, Ph.D.
42 DELPHI INFORMANT MAGAZINE | May 2004
Another contributor to this discussion had some positive
remarks about Borland’s leader: “Fuller really took a risk by
taking Borland under his wing early on. He stood to lose big
time if he failed, but he didn’t. Right now Borland is above
water again and it seems things are going well...” But he did
acknowledge some concern about the recent departures.

This individual made additional observations, suggest-
ing that Delphi developers could do much to help the
company on whose tool they currently depend. He men-
tioned the “high profile products with obvious Delphi
front-ends” that fail to acknowledge the main tool with
which they were built. (There are some very successful
products, such as SpyBot, that have no embarrassment in
acknowledging Delphi as the main tool.)

Delphi offshore, upgrades, and more. One contribu-
tor mentioned the strength of Delphi outside the United
States, something those of us living in the US sometimes
forget as we fall into our doom and gloom mentality. A
developer from Brazil jumped in, mentioning the active
Delphi communities in his country include over 4,000
subscribers. He indicated that “Delphi’s and Borland’s
future are always popular topics,” but added many avoid
upgrading on a regular basis because “Delphi’s expense
is a concern for many Brazilian developers.” But he also
reported that in his country there are serious concerns
with Borland’s big competitor because “Microsoft is drop-
ping support for some of its platforms” and has “changed
the philosophy of its license agreements.”

The thread also included some of the usual complaints
about bugs. One Australian developer put complaints about
Delphi bugs in an interesting context: “We all write code
— who has ever written a truly bug-free large application?
We beat Borland up over bugs when Microsoft releases at
least a new set of patches every other day?”

The next Delphi-Talker endorsed the recommendation for
a more flamboyant CEO, but focused more on a perennial
complaint: The lack of effective marketing. Although
this critic did not elaborate, others did. One individual
whose company is still using Delphi 6 recalled a phone
call from a Borland salesperson who could not convince

www.elists.org/mailman/listinfo/delphi-talk
www.elists.org/mailman/listinfo/delphi-talk
Newsgroups.Borland.com

Alan Moore is a professor at Kentucky State University, where he teaches
music theory and humanities. He was named Distinguished Professor for
2001-2002. He has been named the Project JEDI Director for 2002-2004. He has
developed education-related applications with the Borland languages for more
than 15 years. He’s the author of The Tomes of Delphi: Win32 Multimedia
API (Wordware Publishing, 2000) and co-author (with John C. Penman) of
The Tomes of Delphi: Basic 32-Bit Communications Programming (Wordware
Publishing, 2003). He also has published a number of articles in various
technical journals. Using Delphi, he specializes in writing custom components
and implementing multimedia capabilities in applications, particularly sound
and music. You can reach Alan at acmdoc@aol.com.

F i l e | N e w | The Future of Delphi
him to upgrade. He concluded with, “... and if they can’t
convince me as a developer, how would they convince the
bozos who make the real decisions in companies?” But
another person suggested ways in which we developers
could contribute to Borland marketing: “If every Delphi
developer [would] put a nice splash (or something like
that) in his application with text like “Made in Borland”
or “Powered by Delphi”, the world [might] finally say,
‘Hey, I must try this Delphi stuff.’”

Resistance to upgrading must be a matter of concern for
Borland executives. But when you think about it, there
is a positive dimension to the tendency of some Delphi
developers to stick with older versions: A product’s
shelf life is one indicator of its strength. For example,
the Brazilian developer indicated he still uses Delphi 5
and also Delphi 7 for cross-platform applications. As the
thread continued, there was much discussion of platforms
— especially Win32, .NET, and Linux (I’ll save that
discussion for a future column).

Overall, the discussion was hardly one of doom and gloom.
Based on non-U.S. testimonials of Delphi’s strength, one
developer added optimistically, “Maybe ... just maybe
[Delphi’s popularity offshore] will be enough to help keep
Borland alive with Delphi sales, but that in itself seems to
be a finite market.” He expressed the need for “Borland
to level their management team and get someone in there
who knows what they are doing,” criticizing the attitude he
perceives as, “We’re just a bunch of programmers writing
software for programmers.” He concluded with this view:
“CEO, CIO types really don’t care ... all they care about is
if [the tool company] is going to be around 5, 6, even 10
years from today. Sadly, Microsoft fits that bill a lot better
than Borland does and I’d like to see that changed, but
apparently no one at Borland does.”

The perennial issue: Upgrading. Many contributors to
this discussion thread had something to say about .NET
and Delphi 8. One described it as attractive but lacking the
“maturity of library support that is one of Delphi’s strengths,”
adding that he needed “to deliver now, today — not later.”
Another complained about “no books, ... [few] examples, no
articles, and no trial version for D8.” No articles? I guess this
person hasn’t been reading this magazine!

However, some of the other concerns are not going to
disappear. There was considerable discussion about the
lack of new Delphi books. One person wrote, “Software
Developers are like technicians: don’t consult the Owner’s
Manual until you hit a problem!” But another responded
that, “If we are to keep Delphi alive, we need to attract
new developers to Delphi. I would contend that books
which are easy to read and physically easy to hold
(reading in bed) are the best way to do this compared to
PDF files on CDs.”

One person had a suggestion that addressed multiple
concerns: “Regarding getting newcomers to try Delphi,
I’d love to see Borland kick start things with a ‘Start
Programming with Delphi package’ that costs say $100
and includes a version of Delphi that is useable, has free
43 DELPHI INFORMANT MAGAZINE | May 2004
components [he mentioned the JEDI library], useful code,
and a ‘Start programming’ manual.”

Getting back to the catalyst for this whole discussion, an
earlier contributor added, “Anders and Chuck J. are the
true fathers of Delphi. Anders had another shot at building
a language and he came up with C#,” which he assessed
as “a damned good language with some very impressive
strengths.” But on the topic of .NET, he added that “there
are things D8 can do that C# simply cannot do,” mentioning
the former’s support for sets.

Conclusions, recommendations, and predictions. I don’t
have a crystal ball, but I can suggest possibilities based
on current trends. Had Borland not developed tools for
.NET (especially the new Delphi version), I would be
much more concerned about its future. And I am well
aware of the strength of Borland JBuilder and the extent
to which it is propping up the company. But I continue to
have concerns about Borland’s marketing practices. I sin-
cerely hope Borland will examine all its options to ensure
its — and Delphi’s — future.

One of the Aussie contributors encapsulated much of
the discussion thread with some excellent suggestions.
Because I concur with him, I will summarize his main
points. Borland should:
 Target universities so students can get access to

Borland products at a heavily discounted rate.
 Stop hiding — spend a few bucks to let people know

there are alternatives to Microsoft development tools.
 Release service packs on a regular basis.
 Commission several good texts ASAP on Delphi 7,

Delphi 8, and InterBase.
 Fund a professional mentor program to help budding

developers.

We cannot know for certain the future of Borland or Delphi.
As shocking as it may sound, Borland could outlive Delphi.
In fact, it wouldn’t surprise me to see Borland sell or license
Delphi to Microsoft at some point and concentrate on other
products, especially JBuilder. The one thing that keeps me
from predicting this is that it would in essence come down
to Borland selling its heart and soul — after all, Delphi is a
descendant of Turbo Pascal, Borland’s first product.

I will end with one prediction in which I have great confi-
dence: As long as Borland and Delphi are around, we will be
talking about the future of each. Until next time...

mailto:acmdoc@aol.com

	Table of Contents
	ToolBox
	MySQLDirect .NET 2.00 Released
	TurboDemo 5.0 Available
	RemObjects SDK 3.0 for Delphi Announced
	Packet Sniffer SDK for Windows
	Elcor Software Releases Registry Defragmentation 5.0
	Reg Organizer 2.1 System Utility Announced
	Powerful Set of Tools for JBuilder Developers

	Sound + Vision
	Extending Dreamweaver
	Creating a Simple Object Extension
	The C-level Extensibility Layer
	Registering a Delphi Function with the Dreamweaver JavaScript Engine
	Unpacking JavaScript Arguments
	Packaging the Return Value
	Conclusion
	Begin Listing One —The MediaPlayer library;a Dreamweaver extension

	Columns & Rows
	ADO.NET Data Access Components
	Building the Sample Application Shell
	Building the DataSet
	Connecting the DataGrid
	Conclusion

	.NET Developer
	Exploring the System.IO Namespace
	What Is a Stream?
	Writing and Reading Text Files with Streams
	Writing and Reading Binary Files with Streams
	Asynchronous File Access with Streams
	Serialization and Deserialization
	Begin Listing One —Asynchronous File Access

	Greater Delphi
	RSA Encryption
	What Are Prime Numbers?
	Finding Primes
	Primality Test
	Factoring Primes
	Message Encryption
	The RSA Algorithm
	Conclusion and Scenes from Part II
	Further Reading

	Informant Spotlight
	Moving to ADO.NET
	A Connectionless World
	The Main ADO.NET Classes
	Using the Borland Data Providers
	IDE Handy Hints for the BDP
	Using the BDP Components in Your Application
	A Look at DataSets
	Master-detail in an ADO.NET World
	Accessing Data from Code
	Calculated Fields
	Typed DataSets
	Creating the Typed DataSet
	Binding Data to Other Controls
	Data Validation
	Dealing with Column Changes
	Dealing with Row Changes
	Conclusion

	New & Used
	Doc-To-Help 7.0 Professional
	New &Improved
	Just the Facts
	If It ’s Not Broken ...
	Conclusion

	TextFile
	Delphi Developer ’s Guide to XML, Second Edition

	File | New
	The Future of Delphi

